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Abstract—Mobile Edge Computing (MEC) is a key technology
towards delay-sensitive and computation-intensive applications in
future cellular networks. In this paper, we consider a multi-user,
multi-server system where the cellular base station is assisted
by a UAV, both of which provide additional MEC services to
the terrestrial users. Via dual connectivity (DC), each user can
simultaneously offload tasks to the macro base station and the
UAV-mounted MEC server for parallel computing, while also
processing some tasks locally. We aim to propose an online
resource management framework that minimizes the average
power consumption of the whole system, considering long-term
constraints on queue stability and computational delay of the
queueing system. Due to the coexistence of two servers, the
problem is highly complex and formulated as a multi-stage mixed
integer non-linear programming (MINLP) problem. To solve the
MINLP with reduced computational complexity, we first adopt
Lyapunov optimization to transform the original multi-stage
problem into deterministic problems that are manageable in each
time slot. Afterward, the transformed problem is solved using
an integrated learning-optimization approach, where model-free
Deep Reinforcement Learning (DRL) is combined with model-
based optimization. Via extensive simulation and theoretical
analyses, we show that the proposed framework is guaranteed to
converge and can produce nearly the same performance as the
optimal solution obtained via an exhaustive search.

Index Terms—Lyapunov Optimization, Mobile Edge Comput-
ing, Deep Reinforcement Learning (DRL), Queueing Networks.

I. INTRODUCTION

Mobile Edge Computing (MEC) refers to an emerging
distributed computing paradigm that brings cloud processing
and storage capabilities closer to the end-user (i.e., to the
network’s edges) [1]–[3]. The technology has been widely
recognized as a promising solution to solve the challenges
aligned with the rapid growth of mobile applications and the
Internet of Things (IoT). By offloading part of computational
tasks to the MEC server, the end-users, especially ones that
are battery-based and with limited hardware capabilities, can
experience a better quality of service (QoS) in computation-
intensive and latency-critical applications [4]–[7].

In support of the dynamic and rapid deployment of MEC
networks, mounting the MEC server on Unmanned Aerial
Vehicles (UAVs) has recently attracted attention in both in-
dustry and academia [2], [3], [8]–[10]. In such an approach,
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the UAV can act as a flying base station that can effectively
complement existing cellular networks by providing additional
computational services to the ground user. Due to the inherent
mobility and flexibility of UAVs, this approach is an on-
demand solution well-suited in hotspot areas or rural areas
where network capacity is insufficient [3], [8], [9], [11].
In addition, the Dual Connectivity (DC) technology [12]
can also be integrated into the network to further enhance
the computational efficiency of the edge device. Using DC,
edge devices are enabled to communicate simultaneously
with several eNodeBs, which might significantly improve the
network’s throughput and mobility support [12]–[16]. Indeed,
the concept of DC was introduced in the Third-Generation
Partnership Project (3GPP) Release 12 and has recently been
widely recognized as a promising approach for the deployment
of ultra-dense 5G heterogeneous networks [12]–[16]. Associ-
ating users requesting computationally intensive services to a
single MEC server might result in an overload and possible
service denials of the server to other users. DC allows the
users to offload tasks to two servers simultaneously for parallel
computing, thus being a promising solution to balance the
workload and avoid the service denial issue. Following these
trends, MEC networks can be configured where the mBS and
the UAV act as the Master eNodeB (MeNB) and the Second
eNodeB (SeNB), respectively, both equipped with a MEC
server. The edge user can then offload tasks to both the MEC
servers simultaneously for parallel computing with abundant
computational resources.

Besides mentioned advantages, integrating UAVs and DC
into the MEC networks poses various challenges; one is
the time complexity in resource management of the system.
In general, the optimization in a multi-user, multi-server
MEC network involves solving a mixed integer non-linear
programming (MINLP) problem that jointly determines the
channel assignment (i.e., the user association) for MEC servers
and resource management for communication (e.g., bandwidth
allocation) and computation (e.g., CPU frequency selection for
local and remote computing) at the server and the user. Solving
such a problem is computationally expensive, especially given
the existence of a large number of users. Various solutions
have been proposed to tackle the issue, such as metaheuristic
methods [4], [17], [18], convex relaxation of binary variables
[19], local search-based approaches [20], and decomposition-
based methods [21]. Still, these conventional methods share
a common of requiring a large number of iterations to bring
out a good performance and are thus not suitable for real-time
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control of dynamic MEC systems.
To tackle the issue of time complexity, data-driven solutions

such as deep reinforcement learning (DRL) are promising
candidates that can perform very well while satisfying real-
time control requirements [22]–[27]. The DRL framework
harnesses deep neural networks (DNNs) to learn the optimal
policy that directly maps the system state (e.g., the channel
condition and the number of backlog tasks) to a proper
action (i.e., resource management decision) in each time slot.
Training is performed via continuous interaction between
the optimization solver and the environment (i.e., the MEC
network) to maximize the reward following the decision in
each step (e.g., the system’s energy efficiency and throughput).
Indeed, using DNNs in optimization is a model-free approach
in which the solver learns from experience (i.e., driven by the
training data) to construct an optimal mapping policy, rather
than relying on complex mathematical models that might not
always be accurate and readily available. However, purely
relying on the model-free solution has been reported to lead
to unstable performance and suffer from slow convergence or
even divergence [23], [25], [26]. A proper approach could be
letting the DNN take part of the optimization (e.g., for opti-
mizing binary variables) while still using conventional model-
based methods for the rest. Indeed, the integration of data-
driven and conventional model-based methods has improved
the robustness and convergence of the DRL framework via
online training [23]–[26].

The other challenge in optimizing MEC networks is the
preference for long-term key performance indicators (KPIs)
of dynamic queueing systems, which refer to time-evolving
queueing networks where decisions made in a time slot affect
the optimization in subsequent slots [26], [28]. A typical
example could be minimizing the long-term average power
consumption, subject to queue stability constraints and given
the randomness of the environment (e.g., channel gains and
task arrival). Despite its importance, most existing DRL-
based solutions [23], [24], [29]–[31] do not focus on the
long-term performance when solving resource management
problems in MEC networks. A well-known approach to cope
with the long-term KPIs of a dynamic system is Lyapunov
optimization [28]. The framework can be used to transform
a multi-state problem into deterministic per-time slot sub-
problems while providing a theoretical guarantee to long-term
system stability. The combination of the two robust tools, DRL
and Lyapunov framework, thus is a promising approach to
solving the MINLP problem of network resource management
while monitoring the long-term KPIs, especially in large-scale
multi-user, multi-server MEC systems [26].

In this paper, we consider a UAV-assisted MEC network
with DC, where the UAV and the mBS act as the MeNB and
the SeNB, respectively, to provide edge computing services
to a set of ground users. Via DC, one mobile user can
simultaneously obtain communication resources from both
MEC servers in support of parallel computing. Under ran-
domness of channel condition and task arrival, an MINLP is
formulated to minimize the average power consumption of
the whole system (including the user and the UAV, which
are all battery-operated), given constraints on long-term queue

stability and average task execution delay threshold. We aim
to develop an online resource management algorithm with
reduced computational complexity that produces system-wide
energy efficiency while satisfying all QoS requirements for the
user. We jointly optimize various system variables to achieve
the goal, including channel assignment, local and remote
computational resource scheduling and bandwidth allocation
in each time slot. The Lyapunov framework is adopted to
transform the original multi-stage problem into deterministic
per-time slot problems. A hybrid scheme of combining the
model-free DRL and model-based optimization is then pro-
posed to solve resource management optimization in each time
slot. To the authors’ best knowledge, this is the first work
considering a dynamic multi-user, multi-server MEC system
with assistance from UAVs via DC and developing a DRL
framework for resource management in such a system. The
main contributions can be summarized as follows:

1) Power Minimization for a multi-user, multi-server MEC
System with dual connectivity: In support of parallel
computing, we propose to utilize a UAV to assist edge
computing in a cellular network via DC. The prob-
lem of resource management is formulated as a multi-
stage MINLP to minimize the long-term average of the
weighted-sum power consumption, constrained on long-
term queue stability and task execution delay.

2) Lyapunov-guided DRL Approach: we develop a
Lyapunov-guided DRL framework that can efficiently
produce sub-optimal solutions. DRL is to cope with the
complexity of the problem with the coexistence of two
servers. Meanwhile, Lyapunov optimization is to deal
with the long-term constraints on queue stability and
average task execution delay of the queueing system.

3) Hybrid Approach for Actor-Critic Structure: The pro-
posed framework integrates conventional model-based
optimization and a data-driven approach via model-free
DRL. The actor module utilizes a DNN and an efficient
action quantizer to balance exploration and exploitation
in producing channel assignment decisions. To accurately
evaluate decisions made by the actor, the critic module
utilizes model-based optimization rather than using an-
other DNN conventionally.

4) We provide theoretical analyses and numerical results via
extensive simulation to demonstrate the efficiency of the
proposed method.

The remainder is organized as follows. Related works are
provided in Section II. Sections III and IV detail the system
model and problem formulation, respectively. Sections V and
VI provide the description and theoretical analyses of the
proposed framework. The numerical results are provided in
Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORKS

User Association. In recent years, several works have
studied the user association problem (i.e., channel assignment
or server selection) in resource management for multi-user,
multi-server MEC networks [5], [20], [21], [30], [31]. Dai et
al. [5] formulated a problem of joint computation offloading
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TABLE I: A comparison of our work with existing DRL-based resource management schemes

Our work [25] [23] [24] [29] [30] [31]
Multiple users - - -
Multiple servers - -
Optimize network resources allocation
(channel bandwidth or transmission time)
Optimize task offloading of the user -
Optimize computation on the server side - - - - -
Towards long-term KPIs of queueing systems - - - - -
Dual connectivity and parallel computation - - - - - -

and user association to minimize overall power consumption
of a MEC system where each user has multiple mutually
dependent tasks. Tran et al. [20] studied the problem of joint
sub-channel assignment and resource allocation of a multi-
cell network to maximize a weighted sum of reduction in
task completion time and energy consumption. Liu et al. [30]
considered the switching cost when a mobile user migrates its
service from one server to another and modeled the problem
of continuous server selection as a Markov Decision Process
(MDP). Guo et al. [31] proposed an online learning-based
MEC server selection mechanism under incomplete network
information to minimize the time average task execution delay.
Hu et al. [21] proposed a submodular optimization-based
server selection method for mobile users to optimize the long-
term energy-delay tradeoff. However, the works mentioned
above have yet to investigate the user association problem in
a parallel-computing scenario with dual connectivity. Instead,
users have been grouped into separate clusters and allowed to
connect to only one server at a time. More investigation is
thus needed to fill the gap.

DRL for Resource Management. The utilization of DRL-
based methods in optimization for MEC networks has recently
attracted lots of attention from research community [23]–[25],
[29]–[31]. Min et al. [29] proposed a reinforcement learning-
based offloading scheme for IoT devices with energy harvest-
ing (EH) to select the MEC server according to the current
battery level and the predicted amount of the harvested energy.
Huang et al. [23] proposed a DRL-based offloading framework
that utilizes a deep neural network to produce potential binary
offloading solutions, while a model-based optimization module
is responsible for evaluating candidate decisions and labeling
training data samples. Wu et al. [24] developed a hybrid
framework that combines a deep Q network and convex
optimization for determining offloading strategies at the user
side and allocating resources at the computational access point.
However, the works [23], [24], [29]–[31] only considered
quasi-static scenarios and failed to adequately address long-
term performance requirements (such as queue stability and
average energy consumption) of a time-evolving queueing
system. Following the direction toward long-term KPIs, Bi
et al. [25] recently proposed a hybrid optimization-learning
framework called LyDROO. The framework combines Lya-
punov optimization and DRL to optimize task offloading,
where the user either computes tasks locally or offloads the
tasks (i.e., binary offloading).

In this paper, we also integrate Lyapunov optimization and
DRL into a resource management framework to cope with
long-term KPIs of a queueing network. Compared to [25],

TABLE II: Summary of Key Notations

Symbol Definition
𝑄𝑙

𝑖
(𝑡 ) Local queue length of the user 𝑖 at the beginning of time slot 𝑡

𝑄𝑠
𝑖
(𝑡 ) Queue length of the UAV dedicated for the user 𝑖 at time slot 𝑡

𝐴𝑡
𝑖

Task arrival of user 𝑖 in time slot 𝑡
𝑓 𝑡
𝑙,𝑖

Local computation frequency of user 𝑖 in time slot 𝑡
𝑓 𝑡
𝑐,𝑖

The UAV’s CPU frequency dedicated for processing user 𝑖’s tasks
in time slot 𝑡

𝑝𝑡
𝑙,𝑖

Power consumption for local task execution of user 𝑖 in time slot 𝑡
𝑝Tx,𝑖 (𝑡 ) Transmit power for task offloading of user 𝑖 in time slot 𝑡
𝑝𝑐 (𝑡 ) Power consumption for task execution of the UAV in time slot 𝑡
𝛼𝑡
𝑖, 𝑗

The ratio of bandwidth allocated to user 𝑖 on the server 𝑗’s channel
in time slot 𝑡

𝑟 𝑡
𝑖, 𝑗

Offloading volume of user 𝑖 on server 𝑗’s link in time slot 𝑡
𝑙𝑡
𝑖

The amount of tasks processed locally by user 𝑖 in time slot 𝑡
𝑐𝑡
𝑖

The amount of user 𝑖’s tasks processed by the UAV in time slot 𝑡
𝑊𝑗 The total bandwidth of server 𝑗

ℎ𝑡
𝑖, 𝑗

Channel gain of user 𝑖 for the link to server 𝑗 in time slot 𝑡
𝑥𝑡
𝑖, 𝑗

Link association for user 𝑖 on the server 𝑗’s channel in time slot 𝑡

our innovations are three-fold. First, we propose a new actor
module that utilizes a DNN to optimize parallel computation
between users and servers. The method in [25] allows the user
to either process local computation or offload tasks to an edge
serve; thus it dose not apply to the parallel paradigm. Second,
our proposed framework jointly optimizes not only the user
side but also the server side. Since the problem involves many
interacting network entities, we propose a new model-based
critic module, which is entirely different from [25]. Third, [25]
considered a single powerful MEC server with no limit on the
number of users served at a time. Thus, their algorithms cannot
be directly applied in our study, where we consider a multi-
server system with dual connectivity and specify constraints on
the server’s serving capability. A comprehensive comparison
between our proposed scheme and other existing DRL-based
methods is summarized in Table I. It is noteworthy that the
critic module’s algorithm in this paper is adopted in part from
our previous work [32] to optimize local computation on the
user side.

III. SYSTEM MODEL

As illustrated in Fig. 1, we consider a multi-server MEC
system with Dual Connectivity (DC). There are two MEC
servers, one located at a macro base station (i.e., the Master
eNB, MeNB) and the other mounted on a UAV (i.e., the
Secondary eNB, SeNB), provides additional edge computing
services to a set of ground users. Each mobile user can si-
multaneously connect to the two MEC servers simultaneously.
From now on, the UAV-mounted MEC sever and the SeNB,
similarly to the macro base station and the MeNB, will be
used interchangeably.
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Fig. 1: Dual-Connectivity-supported UAV-assisted MEC system model

For convenience, we denote the index sets of the mobile
devices, the MEC servers, and the time slots respectively as
N ≜ {1, 2, ...𝑁}, S ≜ {UAV,mBS}, and T ≜ {1, 2, ...}. It is
noted that in the following, we index each user by the letter 𝑖
and the MEC server by letter 𝑗 , i.e., 𝑖 ∈ N , 𝑗 ∈ S.

The modeling of task computation, queueing system, task
offloading, and power consumption are presented below. For
ease of reference, key notations used in the article are sum-
marized in Table II.

A. Task Queuing Model

We assume that the mobile devices are processing indepen-
dent and fine-grained tasks [1]. Each task is represented by a
volume of bits, which can be decomposed into several packets
transmitted to nearby MEC servers and processed in parallel.
At the beginning of each slot, a volume of 𝐴𝑡

𝑖
bits arrives at

the user 𝑖 and can be processed starting from the next slot.
Without loss of generality, we assume that 𝐴𝑡

𝑖
is independent

and identically distributed (i.i.d) over time slots with Poisson
distribution and an average rate E[𝐴𝑡

𝑖
] = _𝑖 (bits), 𝑖 ∈ N .

In the 𝑡th time slot, the user processes 𝑙𝑡
𝑖

bits locally and
on opportunity can upload 𝑟 𝑡

𝑖,UAV and 𝑟 𝑡
𝑖,mBS bits to the UAV-

mounted MEC and the macro base station, respectively. The
newly arrived task volumes at the beginning of one slot will
be buffered in the user queue before they can be processed in
subsequent slots. Let 𝑄𝑙

𝑖
(𝑡) denote the local queue length of

user 𝑖 at the beginning of time slot 𝑡; the queue update process
can be expressed as

𝑄𝑙
𝑖 (𝑡 + 1) = max

{
𝑄𝑙

𝑖 (𝑡) − 𝐷𝑡
𝑖 , 0

}
+ 𝐴𝑡

𝑖 , 𝑡 ∈ T , (1)

where 𝐷𝑡
𝑖
≜ 𝑙𝑡

𝑖
+ 𝑟 𝑡

𝑖,UAV + 𝑟 𝑡
𝑖,mBS denotes the amount of tasks

departing from the user 𝑖’s local queue in time slot 𝑡.
At the UAV side (i.e., the SeNB), we assume that the UAV

maintains 𝑁 dedicated queues, one for each user, to buffer
tasks offloaded by users. Let 𝑐𝑡

𝑖
denote the amount of tasks

from user 𝑖 executed by the UAV in time slot 𝑡; the UAV’s
task queue dedicated for user 𝑖, denoted by 𝑄𝑠

𝑖
(𝑡), can be

derived similarly as

𝑄𝑠
𝑖 (𝑡 + 1) = max

{
𝑄𝑠

𝑖 (𝑡) − 𝑐𝑡𝑖 , 0
}
+ 𝑟 𝑡𝑖,UAV, 𝑡 ∈ T . (2)

In this paper, all user and UAV task queues are assumed
with sufficiently large capacity. In addition, without loss of
generalization, all task queues are empty initially, i.e., 𝑄𝑙

𝑖
(0) =

𝑄𝑠
𝑖
(0) = 0, 𝑖 ∈ N .

Regarding the macro BS (i.e., the MeNB), we assume
that the server has redundant computational resources and is
powered by an electrical grid; therefore, we do not consider the
macro BS’s queues and power consumption in optimization.
In other words, tasks offloaded to the macro BS will not
be buffered in queues but executed promptly, and the energy
consumed is less important than other network entities.

According to Little’s Law [33], the average delay experi-
enced by one user is proportional to the long-term average
number of tasks awaiting in the system. Thus, we exploit the
average queue length at the user and the UAV, denoted by 𝑄

𝑙

𝑖

and 𝑄
𝑠

𝑖 , as a measure of the task completion delay for local and
remote task processing. Furthermore, the two thresholds 𝑄th

𝑙,𝑖

and 𝑄th
𝑠,𝑖

are defined as a Quality of Service (QoS) constraint
for the 𝑖th user as

𝑄
𝑙

𝑖 = lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0
E

[
𝑄𝑙

𝑖 (𝑡)
]
≤ 𝑄th

𝑙,𝑖 (3)

𝑄
𝑠

𝑖 = lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0
E

[
𝑄𝑠

𝑖 (𝑡)
]
≤ 𝑄th

𝑠,𝑖 (4)

where the expected values of the queue length (i.e., E
[
𝑄𝑙

𝑖
(𝑡)

]
and E

[
𝑄𝑠

𝑖
(𝑡)

]
) are taken over the randomness of the channel

gain and task arrival in a time slot. It is worth noting that from
(1) we have 𝑄𝑙

𝑖
(𝑡 + 1) ≥ 𝐴𝑡

𝑖
, thus 𝑄

𝑙

𝑖 ≥ E[𝐴𝑡
𝑖
] for all users.

Therefore, 𝑄th
𝑙,𝑖

should be selected such that 𝑄th
𝑙,𝑖

≥ _𝑖 , 𝑖 ∈ N .

B. Task Execution Model

To process tasks locally, the mobile user needs to assign
a specific number of CPU frequencies for each task. Let 𝑓 𝑡

𝑙,𝑖

denote the local CPU frequency of user 𝑖 in time slot 𝑡; the
amount of locally-computed tasks in time slot 𝑡 can then be
expressed as

𝑙𝑡𝑖 = 𝜏 𝑓 𝑡𝑙,𝑖/𝐿𝑖 . (5)

Here, 𝜏 denotes the time slot length and 𝐿𝑖 denotes the
processing density, defined as the number of CPU cycles
required for user 𝑖 to process one bit. According to circuit
theory, the power consumption for local execution at the 𝑖th
user is given by [34], [35]

𝑝𝑙,𝑖 (𝑡) = ^𝑖

(
𝑓 𝑡𝑙,𝑖

)3
, (6)
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where the parameter ^𝑖 is the effective switched capacitance
of the CPU at the 𝑖th device, and dependent on the hardware
architecture.

Similarly, at the UAV, the amount of tasks computed by the
MEC server for the 𝑖th user in time slot 𝑡 can be expressed by

𝑐𝑡𝑖 = 𝜏 𝑓 𝑡𝑐,𝑖/𝐿𝑠 , (7)

where 𝑓 𝑡
𝑐,𝑖

denotes the CPU frequency resources that the UAV
allocates for computing the 𝑖th user’s tasks; 𝐿𝑠 denotes the
processing density for the UAV’s CPU to process one bit. The
power consumption of the UAV for computation can be defined
similarly as

𝑝𝑐 (𝑡) =
∑︁
𝑖∈N

^𝑠

(
𝑓 𝑡𝑐,𝑖

)3
, (8)

where ^𝑠 denotes effective switched capacitance of the UAV’s
CPU. We assume that the computational capability of the UAV
is stronger than that of the mobile user, but limited by the
maximum CPU frequency, i.e., 𝑓 𝑡

𝑐,𝑖
≤ 𝑓 max

𝑐 , 𝑖 ∈ N .

C. Task Offloading Model

Channel power gain from user 𝑖 to the MEC server 𝑗 :

ℎ𝑡𝑖, 𝑗 =
ℎ̃𝑡
𝑖, 𝑗
𝑔 𝑗(

𝑑𝑖, 𝑗
)𝛾 𝑗

, (9)

where 𝑑𝑖, 𝑗 denotes the distance from user 𝑖 to the MEC server
𝑗 , 𝛾 𝑗 denotes the path loss exponent (𝛾 𝑗 ≥ 2), 𝑔 𝑗 denotes the
reference channel gain, and ℎ̃𝑡

𝑖, 𝑗
denotes the small-scale fading

channel power gain, which is assumed to have a finite mean
value, E

[
ℎ̃𝑡
𝑖, 𝑗

]
< ∞ [34], for the server 𝑗’s link.

To allocate radio resources to the mobile device, each MEC
server will first select a subset of users (assuming that one
server cannot serve all the users at the same time), then
allocate each user in that subset an appropriate bandwidth for
communication offloading. Let 𝑥𝑡

𝑖, 𝑗
denotes the link association

for the user 𝑖 on the server 𝑗’s communication channel in
time slot 𝑡: 𝑥𝑡

𝑖, 𝑗
= 1 indicates that the user 𝑖 could utilize

bandwidth allocated on the server 𝑗’s channel; otherwise, no
bandwidth is allocated and offloading is prohibited. N 𝑡

𝑗
≜{

𝑖 ∈ N
���𝑥𝑡𝑖, 𝑗 = 1

}
⊂ N then can be defined as the set of mobile

devices associated with the MEC server 𝑗 in time slot 𝑡. Simi-
larly, the set of the MEC servers that associate with the 𝑖th user
in time slot 𝑡 can be defined as S𝑡

𝑖
≜

{
𝑗 ∈ S

���𝑥𝑡𝑖, 𝑗 = 1
}
⊂ S.

Regarding the communication energy, according to the
Shannon-Hartley formula, the transmit power for user 𝑖 to
offload 𝑟 𝑡

𝑖
bits can be obtained as [36]

𝑝Tx,𝑖 (𝑡) =
∑︁
𝑗∈S𝑡

𝑖

©«2
𝑟𝑡
𝑖, 𝑗

𝑊𝑗 𝛼
𝑡
𝑖, 𝑗

𝜏 − 1ª®¬
𝑁0𝑊 𝑗

ℎ𝑡
𝑖, 𝑗

, (10)

where 𝑊 𝑗 denotes the total bandwidth of the server 𝑗 , 𝛼𝑡
𝑖, 𝑗

denotes the bandwidth ratio allocated to user 𝑖 on the server 𝑗’s
channel, and 𝑁0 denotes the background noise density. In (10),
𝑟 𝑡
𝑖, 𝑗

denotes the offloading volume of the user 𝑖 on the server
𝑗’s communication channel in time slot 𝑡, thus 𝑟 𝑡

𝑖
=

∑
𝑗∈S𝑡

𝑖
𝑟 𝑡
𝑖, 𝑗

.
It is worth noting that since the mobile user is supported by

dual connectivity, one user can connect to both the two MEC

servers at the same time, i.e., 𝑥𝑡
𝑖,UAV and 𝑥𝑡

𝑖,mBS can be both
equal to one in a time slot, thus��S𝑡

𝑖

�� = ∑︁
𝑗∈S

𝑥𝑡𝑖, 𝑗 ≤ 2, 𝑖 ∈ N , 𝑡 ∈ T , (11)

where |A| denotes the number of elements in set A. Due to
signaling overhead for resource management, we assume that
server 𝑗 is able to serve at most 𝜒max

𝑗
users in a time slot, i.e.,���N 𝑡

𝑗

��� = ∑︁
𝑖∈N

𝑥𝑡𝑖, 𝑗 ≤ 𝜒max
𝑗 , 𝑗 ∈ S, 𝑡 ∈ T . (12)

IV. THE MULTI-STAGE MINLP PROBLEM OF POWER
CONSUMPTION MINIMIZATION

A. Problem Formulation

We focus on the weighted-sum system power consumption,
which consists of power consumed for task execution at the
user device and the UAV-mounted MEC server, as well as the
user’s transmit power for task offloading. Energy consumed for
other purposes, such as for maintaining the basic operations of
the MEC system and for propulsion of the UAV, are omitted
for simplicity. Accordingly, the system’s power consumption at
time slot 𝑡, denoted by 𝑃sys (𝑡), can be calculated as a weighted
sum as

𝑃sys (𝑡) = 𝜓𝑐𝑝𝑐 (𝑡) +
∑︁
𝑖∈N

𝜓𝑖

(
𝑝𝑙,𝑖 (𝑡) + 𝑝Tx,𝑖 (𝑡)

)
, (13)

where 𝜓𝑖 and 𝜓𝑐 are positive numbers denoting the weight
factors for the power consumption of user 𝑖 and the UAV,
respectively. 𝜓𝑖 and 𝜓𝑐 can be adjusted to reflect the system’s
preference in optimizing the power consumption of different
nodes, as well as to balance the impact of the UAV’s and the
mobile device’s energy [34].

The ultimate goal of the optimization is to minimize the
long-term average of the system power consumption, given
constraints on the stability of task queues and the limit on the
radio and computational resources. The optimization variables
include the user’s local computation, the volume of offloaded
tasks, the UAV’s remote processing scheduling, and the radio
resource allocation.

Let X = {X𝑡 }𝑡∈T denote the combination of all op-
timization variables over time. Additionally, let X𝑡 ={
x𝑡
𝑗
,𝜶𝑡

𝑗
, r𝑡

𝑗
, f𝑡

𝑙
, f𝑡𝑐

}
𝑗∈S

denote the combined vector of opti-

mization variables at time slot 𝑡 for all server 𝑗 in S:
x𝑡
𝑗
= {𝑥𝑡

𝑖, 𝑗
}𝑖∈N , 𝜶𝑡

𝑗
= {𝛼𝑡

𝑖, 𝑗
}𝑖∈N , r𝑡

𝑗
=

{
𝑟 𝑡
𝑖, 𝑗

}
𝑖∈N

, f𝑡
𝑙
= { 𝑓 𝑡

𝑙,𝑖
}𝑖∈N ,

f𝑡𝑐 = { 𝑓 𝑡
𝑐,𝑖
}𝑖∈N . Then, the problem can be formulated as a

multi-stage MINLP problem as

P1 : min
X

lim
𝑡→∞

1
𝑇

𝑇−1∑︁
𝑡=0
E

[
𝑃sys (𝑡)

]
(14a)

s.t. 𝑥𝑡𝑖, 𝑗 ∈ {0, 1},
���N 𝑡

𝑗

��� ≤ 𝜒max
𝑗 , 𝑖 ∈ N , 𝑗 ∈ S, ∈ T ,

(14b)

0 ≤ 𝛼𝑖, 𝑗 (𝑡),
∑︁
𝑖∈N𝑗

𝛼𝑡
𝑖, 𝑗 ≤ 1, 𝑖 ∈ N , 𝑗 ∈ S, 𝑡 ∈ T ,

(14c)
0 ≤ 𝑓 𝑡𝑙,𝑖 ≤ 𝑓 max

𝑖 , 𝑖 ∈ N , 𝑡 ∈ T , (14d)
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0 ≤ 𝑓 𝑡𝑐,𝑖 ≤ 𝑓 max
𝑐 , 𝑖 ∈ N , 𝑡 ∈ T , (14e)

0 ≤ 𝑝Tx,𝑖 (𝑡) ≤ 𝑝max
Tx,𝑖 , 𝑖 ∈ N , 𝑡 ∈ T , (14f)

𝑙𝑡𝑖 + 𝑟 𝑡𝑖,UAV + 𝑟 𝑡
𝑖,mBS ≤ 𝑄𝑙

𝑖 (𝑡), 𝑖 ∈ N , 𝑡 ∈ T , (14g)

𝑐𝑡𝑖 ≤ 𝑄𝑠
𝑖 (𝑡), 𝑖 ∈ N , 𝑡 ∈ T , (14h)

lim
𝑡→∞

E
[
𝑄𝑙

𝑖
(𝑡)

]
𝑡

= 0, 𝑖 ∈ N , (14i)

lim
𝑡→∞

E
[
𝑄𝑠

𝑖
(𝑡)

]
𝑡

= 0, 𝑖 ∈ N , (14j)

(3) and (4)

In P1, (14b) denotes that the server 𝑗 can server at most
𝜒max
𝑗

users at a time. (14c) ensures that the total bandwidth
used for the server 𝑗’s’ uplink communication is bounded by
𝑊 𝑗 . (14d) and (14e) indicate the maximum CPU frequency of
the user and the UAV, denoted by 𝑓 max

𝑖
and 𝑓 max

𝑐 , respectively.
(14f) denotes the maximum transmit power of the mobile
device on each communication link. (14g) and (14h) guarantee
that the amount of tasks processed in a time slot (i.e., tasks
offloaded and computed by the user and tasks computed by the
UAV) does not surpass the backlog of task queues in each time
slot. Finally, (14i) and (14j) indicate the mean rate stability
[28] for the local and remote queues. Note that (14i) and (14j)
do not provide any guarantee of the time-average expected
backlogs in queues (and thus the average computation delay).
The QoS constraints (3) and (4), which is a stronger form of
stability [28], are thus useful.

We observe that P1 is a stochastic optimization problem of a
time-evolving system. Indeed, radio and computation resource
management decisions need to be made in each time slot under
the randomness of the arrival task and the fading channel.
Furthermore, optimal decisions are temporally correlated and
should be adaptive to the time-varying system states, such as
the current queue size at the mobile device and the UAV. Solv-
ing P1 is challenging also because the optimization evolves
a large number of interdependent optimization variables.
Specifically, the radio resource management variables among
different end users (i.e., 𝑥𝑡

𝑖, 𝑗
and 𝛼𝑡

𝑖, 𝑗
, 𝑖 ∈ N ) are coupled and

interdependent with the computational resource scheduling at
both sides (i.e., 𝑓 𝑡

𝑙,𝑖
and 𝑓 𝑡

𝑐,𝑖
, 𝑖 ∈ N ), which suggests that a

joint optimization approach is indeed needed. Later in the
numerical results, we show that the over-aggressive approach
(e.g., a greedy policy based on channel gain or queue length)
could not solve the formulated problem effectively.

In the following, instead of solving P1 directly, we
consider its modified version, denoted by P2, to ob-
tain an efficient asymptotically optimal online solution as
follows. First, we can rewrite (14c) as 𝜶𝑡

𝑗
∈ A ≜{

𝜶𝑡
𝑗
∈ R+

𝑁

���∑𝑖∈N𝑗
𝛼𝑡
𝑖, 𝑗

≤ 1
}
, 𝑗 ∈ S, 𝑡 ∈ T . To obtain P2, we

replace (14c) by the following constraint,

𝜶𝑡
𝑗 ∈ Ã ≜

{
𝜶𝑡

𝑗 ∈ R𝑁
+

��� ∑︁
𝑖∈N𝑗

𝛼𝑡
𝑖, 𝑗 ≤ 1 and 𝛼𝑡

𝑖, 𝑗 ≥ 𝜖𝐴, 𝑖 ∈ N 𝑡
𝑗

}
(14c’)

where 𝜖𝐴 ∈ (0, 1/𝑁) is a constant. Constraint (14c’) causes the
transmit power function in (10) continuous and differentiable
with respect to 𝛼𝑡

𝑖, 𝑗
, 𝑗 ∈ S𝑡

𝑖
. It is worth noting that although the

optimal solution to P2 is only a approximation of the optimal

solution to P1, we can make them arbitrarily close by setting
𝜖𝐴 to be sufficiently small.

B. Lyapunov-guided Problem Transformation

We adopt Lyapunov optimization framework [28] to decou-
ple the multi-stage problem P2 into deterministic problems
that can be solved in each time slot.

First, to cope with the QoS constraints (3) and (4) on
the long-term average of the queue length, we introduce two
virtual queues for each mobile,

𝑍 𝑙
𝑖 (𝑡 + 1) = max

{
𝑍 𝑙
𝑖 (𝑡) +𝑄𝑙

𝑖 (𝑡 + 1) −𝑄th
𝑙,𝑖 , 0

}
, (15)

𝑍 𝑠
𝑖 (𝑡 + 1) = max

{
𝑍 𝑠
𝑖 (𝑡) +𝑄𝑠

𝑖 (𝑡 + 1) −𝑄th
𝑠,𝑖 , 0

}
, (16)

for 𝑖 ∈ N , 𝑡 ∈ T , where 𝑍 𝑙
𝑖
(0) = 𝑍 𝑠

𝑖
(0) = 0. By the

definition of the two virtual queues, it is proved in [28]
that constraints (3) and (4) are satisfied if the two virtual
queues are mean-rate stable, i.e., lim𝑇→∞ E

[
𝑍 𝑙
𝑖
(𝑡)

]
/𝑇 = 0

and lim𝑇→∞ E
[
𝑍 𝑠
𝑖
(𝑡)

]
/𝑇 = 0.

In support of the problem transformation, we de-
fine the system state at time slot 𝑡 as 𝚯(𝑡) ≜{
𝑄𝑙

𝑖
(𝑡), 𝑄𝑠

𝑖
(𝑡), 𝑍 𝑙

𝑖
(𝑡), 𝑍 𝑠

𝑖
(𝑡)

}
𝑖∈N . The Lyapunov function is

then defined as a measure of the total queue backlog at time
slot 𝑡 as

L (𝚯(𝑡)) ≜ 1
2

∑︁
𝑖∈N

(
𝑄𝑙

𝑖 (𝑡)2 +𝑄𝑠
𝑖 (𝑡)2 + 𝑍 𝑙

𝑖 (𝑡)2 + 𝑍 𝑠
𝑖 (𝑡)2

)
, (17)

To keep all the queues stable, the Lyapunov drift function is
introduced as

Δ (𝚯(𝑡)) ≜ E [L (𝚯(𝑡 + 1)) − L (𝚯(𝑡)) |𝚯(𝑡) ] (18)

To minimize the long-term average power consumption
while ensuring the queue stability constraint, we define the
Lyapunov-drift-plus-penalty as

Δ𝑉 (𝚯(𝑡)) ≜ Δ (𝚯(𝑡)) +𝑉E
[
𝑃sys (𝑡) |𝚯(𝑡)

]
, (19)

where 𝑉 is a positive number denoting a control parameter
for the trade-off between the system’s power consumption and
the average queueing delay. The following theorem provides
an upper bound of Δ𝑉 (𝚯(𝑡)), which is crucial to the trans-
formation of the multi-stage problem P2 into per-time slot
deterministic problems.

Theorem 1. The drift-plus-penalty Δ𝑉 (𝚯(𝑡)) is bounded as

Δ𝑉 (𝚯(𝑡)) ≤�̂� −
∑︁
𝑖∈N
E

[ (
𝑄𝑙

𝑖 (𝑡) + 𝑍 𝑙
𝑖 (𝑡)

) (
𝐷𝑡

𝑖 − 𝐴𝑡
𝑖

) ���𝚯(𝑡)
]

−
∑︁
𝑖∈N
E

[ (
𝑄𝑠

𝑖 (𝑡) + 𝑍 𝑠
𝑖 (𝑡)

) (
𝑐𝑡𝑖 − 𝑟 𝑡𝑖,UAV

)���𝚯(𝑡)
]

+𝑉E
[
𝑃sys (𝑡)

��𝚯(𝑡)
]

(20)

where 𝐷𝑡
𝑖
= 𝑙𝑡

𝑖
+ 𝑟 𝑡

𝑖,UAV + 𝑟 𝑡
𝑖,mBS; �̂� consists of constant terms

from the observation at the beginning of time slot 𝑡, thus can
be put aside from the optimization of the target variables X𝑡 .

Proof. Please refer to Appendix A. □

With support from Theorem 1, we can transform the multi-
stage problem P2 into a deterministic problem that can be
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solved in each time slot using the opportunistic expectation
minimization technique [28]. Specifically, the long-term goal
of P2 can be archived by minimizing the upper bound of
Δ𝑉 (𝚯(𝑡)) in each time slot, taking the system state 𝚯(𝑡)
observed at the beginning of a time slot as the input. By
removing constant terms in (20), the deterministic per-time
slot problem is formulated as

P3 : min
X𝑡

𝐺
(
X𝑡

)
(21a)

s.t. (14b), (14c’), (14d) - (14h)

with the objective function as follows

𝐺 (X𝑡 ) = −
∑︁
𝑖∈N

[(
𝑄𝑙

𝑖 (𝑡) + 𝑍 𝑙
𝑖 (𝑡)

) (
𝑙𝑡𝑖 + 𝑟 𝑡𝑖,UAV + 𝑟 𝑡

𝑖,mBS

)]
−

∑︁
𝑖∈N

[ (
𝑄𝑠

𝑖 (𝑡) + 𝑍 𝑠
𝑖 (𝑡)

) (
𝑐𝑡𝑖 − 𝑟 𝑡𝑖, 𝑗

)]
+𝑉

(
𝜓𝑐𝑝𝑐 (𝑡) +

∑︁
𝑖∈N

𝜓𝑖

(
𝑝𝑙,𝑖 (𝑡) + 𝑝Tx,𝑖 (𝑡)

))
(22)

It is worth mentioning that solving P3 does not require any
future information about incoming tasks and wireless channel
state other than the current state of the task queues, making the
approach an online optimization design. In the next section,
we will introduce a DRL-based online optimization algorithm
to solve P3 efficiently.

V. DEEP REINFORCEMENT LEARNING-BASED ONLINE
RESOURCE MANAGEMENT

We propose a DRL-based resource management (DRLRM)
scheme for solving the per-time slot problem P3. The pro-
posed framework, as depicted in Fig.2, consists of three main
modules, which are (1) the actor module, (2) the critic module,
and (3) the policy update module. The actor module obtains
necessary information for optimization from the system ob-
server and adopts a DNN to output several potential decisions
for channel assignment, x̃𝑡 =

{
𝑥𝑡
𝑖, 𝑗

}
𝑖∈N, 𝑗∈S

. The critic module

evaluates each decision made by the actor module by solving
remaining variables y𝑡 =

{
𝛼𝑡
𝑖, 𝑗
, 𝑟 𝑡

𝑖, 𝑗
, 𝑓 𝑡

𝑙,𝑖
, 𝑓 𝑡

𝑐,𝑖

}
𝑖∈N, 𝑗∈S

using

model-based optimization. The policy update module logs a
history of the system state-optimal decision pairs on the fly
and re-trains the actor module’s DNN in a periodic manner so
that the mapping policy will be updated and adaptive to the
time-varying channel condition. In the following, we describe
in detail the learning-based framework depicted in Fig. 2,
followed by the model-based optimization of the critic module.

For ease of convenience, the input and output of the actor
module are denoted as follows. The input is denoted by
𝚵𝑡 =

{
ℎ𝑡
𝑖, 𝑗
, 𝑄𝑙

𝑖
(𝑡), 𝑄𝑠

𝑖
(𝑡), 𝑍 𝑙

𝑖
(𝑡), 𝑍 𝑠

𝑖
(𝑡)

}
𝑖∈N, 𝑗∈S

, which includes

the channel gain and the queue length of all physical and
virtual queues for each user. The module’s output is presented
by

{
x̃𝑡𝑚

}𝑘
𝑚=1, where 𝑘 denotes the number of potential channel

assignment decisions made.

Remark 1. The above approach is backed by the Tammer
decomposition technique [37], where combinatorial variables
in x̃𝑡 are decoupled from continuous variables in y𝑡 . Indeed,

by temporarily fixing x̃𝑡 , we can further decompose P3 into
several sub-problems with separate objectives and constraints.

Remark 2. To obtain the optimal decision for x̃𝑡 , an exhaus-
tive search requires evaluating

𝑘max =

(
𝑁

𝜒max
UAV

) (
𝑁

𝜒max
mBS

)
(23)

possible channel assignment decisions, where
(𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘 )!
indicates the binomial coefficient of selecting an (unordered)
subset of 𝑘 elements from a fixed set of 𝑛 elements. Since

(𝑛
𝑘

)
is in O(𝑛𝑘), an exhaustive search over all possible channel
assignments is with complexity O

(
𝑁𝜒max

UAV+𝜒
max
mBS

)
. In the follow-

ing sub-section, we propose to use a DNN to find (x̃𝑡 )★ with
much less computational complexity. The DNN will be trained
periodically to dynamically adapt to the time-varying channel
condition and approximate an optimal policy Π★

𝑡 that maps the
current system state to an optimal channel assignment decision
in time slot 𝑡, Π★

𝑡 : 𝚵𝑡 ↦→ (x̃𝑡 )★.

A. Outline of the Proposed DRLRM Framework

1) Model-free Actor Module: The actor module consists
of a DNN and an action quantizer. The DNN obtains 𝚵𝑡

and processes the forward propagation to output a relaxed
channel assignment x̂𝑡 =

{
𝑥𝑡
𝑖, 𝑗

∈ [0, 1]
}
𝑖∈N, 𝑗∈S

, which will be

later quantized into a number of potential channel assignment
decisions. We adopt a Deep Neural Network (DNN) to repre-
sent the channel assignment policy (an approximation to the
optimal policy Π★

𝑡 ) as ΠΦ𝑡
: 𝚵𝑡 ↦→ x̂𝑡 , where Φ𝑡 denotes the

DNN’s parameters at time slot 𝑡. To ensure that 𝑥𝑡
𝑖, 𝑗

∈ [0; 1]
for all 𝑖 ∈ N , 𝑗 ∈ S, we use the sigmoid activation function
at the output layer of the DNN.

The action quantizer of the actor module will then obtain
the relaxed channel assignment x̂𝑡 to generate a batch of 𝑘

potential decisions. Let Γ denote the quantizer policy, we have
Γ : x̂𝑡 ↦→ x̃𝑡 , where x̃𝑡 =

{
𝑥𝑡
𝑖, 𝑗

∈ {0, 1}
}
𝑖∈N, 𝑗∈S

denotes

the output channel assignment decision. Let 𝜍 𝑡
𝑗

denote the

𝜒max
𝑗

-th largest element of x̂𝑡
𝑗
≜

{
𝑥𝑡
𝑖, 𝑗

∈ {0, 1}
}
𝑖∈N

(the set of
relaxed channel assignments corresponding to the server 𝑗).
Then, for each 𝑥𝑡

𝑖, 𝑗
in x̂𝑡 , the quantization policy Γ generates

a corresponding value of 𝑥𝑡
𝑖, 𝑗

in x̃𝑡 as

𝑥𝑡𝑖, 𝑗 =

{
1, if 𝑥𝑡

𝑖, 𝑗
≥ 𝜍 𝑡

𝑗
,

0, otherwise.
(24)

To generate the first decision (x̃𝑡1), we apply the policy Γ

directly to the output of the DNN, i.e., x̂𝑡 . The remaining
(𝑘 − 1) decisions are generated by applying the policy Γ to
noise-added versions of x̂𝑡 , denoted as Sigmoid (x̂𝑡 + n), where
Sigmoid(·) denotes the element-wise sigmoid function to
ensure each element of the output vector falls within the range
(0, 1). Here, n ∼ N(0, 𝜎2

𝑛I) is a 2𝑁-dimensional zero-mean
random vector following the normal (Gaussian) distribution
with a diagonal covariance matrix 𝜎2

𝑛I; I denotes the identity
matrix. The variable 𝜎𝑛 is a hyper-parameter responsible for
the balance between exploration and exploitation of the action
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Fig. 2: Schematic of the proposed DRLRM framework

quantizer. Too relaxed values of 𝜎𝑛 might not take advantage
of the DNN output to predict the optimal channel assignment.
In contrast, too strict values of 𝜎𝑛 might hamper the critic
module from extracting good approximations of the per-time
slot problem’s global minimum in each time slot. In the
long term, this phenomenon causes the DNN to experience
difficulties in learning the optimal channel assignment policy
due to the noisy labels extracted by the critic module.

2) Model-based Critic Module: The model-based critic
module obtains the set of potential channel assignment deci-
sions from the actor module to select the best decision among
them and solve the optimization problem for the remain-
ing variables. Unlike the conventional approach that adopts
another DNN for the critic module, our approach leverages
the model information on the user-server communication and
power consumption to evaluate each channel assignment deci-
sion analytically. Indeed, by fixing the setting for x𝑡

𝑗
, 𝑗 ∈ S, it

is feasible to find optimal settings for the remaining variables
in y𝑡 , which are all continuous. Specifically, let (y𝑡 )★ denote
the optimal decision for y𝑡 and 𝐽★

(
x̃𝑡 ,𝚵𝑡

)
denote the optimal

value of the objective function (21a) given x̃𝑡 and 𝚵𝑡 , P3 is
equivalent to the problem, denoted as P4, of finding

(x̃𝑡 )★ ≜ arg min 𝐽★
(
x̃𝑡 ,𝚵𝑡

)
, (25)

where x̃𝑡 is one among 𝑘 channel assignment decisions given
by the actor module. We will introduce in detail the algorithm
to obtain 𝐽★

(
x̃𝑡 ,𝚵𝑡

)
in Section V-B.

Using a model-based critic module brings the advantage of
having an accurate evaluation for each decision on the chan-
nel assignment, thus improving the convergence of training.
Besides, it is worth noting that to obtain (x̃𝑡 )★ and (y𝑡 )★,
we need to evaluate 𝑘 times the function 𝐽★

(
x̃𝑡 ,𝚵𝑡

)
. Thus, 𝑘

is another hyper-parameter of the system that will affect the
trade-off between performance and computational complexity.
In general, larger values of 𝑘 result in a better performance
in terms of convergence time but require more computational
resources.

3) Policy Update Module: The policy update module ex-
ploits training samples labeled by the critic module (i.e.,
the pair

{
𝚵𝑡 , (x̃𝑡 )★

}
) to update the parameters of the actor

module’s DNN. A replay memory of size 𝑞 is adopted to
record the training samples. Only the most recent data samples

are kept, i.e., new data will continuously replace the old ones
to avoid memory bloat. Beginning with an empty memory, we
start training the DNN only when at least 𝑞/2 data samples
are available. Afterward, the DNN is trained periodically once
every 𝛿𝑇 time slots. Such a training scheme helps prevent
the DNN from overfitting with noise in the input and enables
the neural network to adapt dynamically to the time-varying
channel condition.

Specifically, a batch of training samples is randomly se-
lected from the replay memory when mod (𝑡, 𝛿𝑇 ) = 0 (
mod indicates the modulo operation). We then use these
samples to train the DNN by using the Adam algorithm [38]
to minimize the cross-entropy cost function 𝐿 (Φ𝑡 ), given as

𝐿 (Φ𝑡 ) =
−1
|S𝑡 |

∑︁
𝜏∈S𝑡

[
(x̃𝜏)T log (ΠΦ𝑡 (𝚵𝜏))

+ (1 − x̃𝜏)T log (1 − ΠΦ𝑡 (𝚵𝜏))
]
. (26)

In (26), S𝑡 denotes the set of time indices of data samples
selected for training at time 𝑡; |S𝑡 | denotes the size of S𝑡 ; (·)T

denotes the transpose operator; and log(·) denotes the element-
wise logarithm operation of a vector. The cost function in (26)
measures the goodness of the relaxed channel assignment (i.e.,
the output of the DNN) compared to the best decision selected
by the critic module. Lower values of 𝐿 (Φ𝑡 ) indicate good
performance and that Φ𝑡 is appropriate in generalizing the
mapping rule for channel assignment.

B. Model-based Optimization of the Critic Module

In this section, we present in detail the optimization al-
gorithm used by the critic module to obtain 𝐽★

(
x̃𝑡 ,𝚵𝑡

)
in

(25). For a given the channel assignment decision x̃𝑡 ={
𝑥𝑡
𝑖, 𝑗

}
𝑖∈N, 𝑗∈S

, we can obtain the optimal solution for y𝑡 ={
𝛼𝑡
𝑖, 𝑗
, 𝑟 𝑡

𝑖, 𝑗
, 𝑓 𝑡

𝑙,𝑖
, 𝑓 𝑡

𝑐,𝑖

}
𝑖∈N, 𝑗∈S

by decomposing the per-time slot

problem P3 into four sub-problems, including optimization
for offloading volume and bandwidth allocation for the UAV
and the mBS links, optimization for local computation, and
optimization for UAV’s computational resource scheduling.

1) Optimization on Offloading Volume and Bandwidth
Allocation for the UAV link: Given a feasible chan-
nel assignment decision, the optimization variables related
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to the UAV includes the bandwidth allocation, 𝜶𝑡
UAV ≜{

𝛼𝑡
𝑖, 𝑗
|𝑖 ∈ N 𝑡

UAV, 𝑗 = UAV
}
, and the offloading volume on the

UAV link, r𝑡UAV ≜
{
𝑟 𝑡
𝑖, 𝑗
|𝑖 ∈ N 𝑡

UAV, 𝑗 = UAV
}
. Let x𝑡UAV ≜{

𝜶𝑡
UAV, r

𝑡
UAV

}
denote the combination of these variables. The

optimal decision for x𝑡UAV can be obtained by solving the
following problem, hereinafter referred to as P3.1:

min
x𝑡UAV

−
∑︁

𝑖∈N𝑡
UAV

[(
𝑄𝑙

𝑖 (𝑡) + 𝑍 𝑙
𝑖 (𝑡) −𝑄𝑠

𝑖 (𝑡) − 𝑍 𝑠
𝑖 (𝑡)

)
𝑟 𝑡𝑖,UAV

]
+𝑉

∑︁
𝑖∈N𝑡

UAV

𝜓𝑖

©«2
𝑟𝑡
𝑖,UAV

𝑊UAV𝛼𝑡
𝑖,UAV𝜏 − 1ª®¬ 𝑁0𝑊UAV

ℎ𝑡
𝑖,UAV

 (27a)

s.t. 𝜖𝐴 ≤ 𝛼𝑡
𝑖,UAV,

∑︁
𝑖∈N𝑡

UAV

𝛼𝑡
𝑖,UAV ≤ 1, 𝑖 ∈ N 𝑡

UAV, (27b)

0 ≤ 𝑟 𝑡𝑖,UAV ≤ min
{
𝑄𝑙

𝑖 (𝑡), 𝑟
𝑡 ,max
𝑖,UAV

}
, 𝑖 ∈ N 𝑡

UAV, (27c)

where 𝑟
𝑡 ,max
𝑖,UAV = 𝑊UAV𝛼

𝑡
𝑖,UAV𝜏 log2

(
1 + 𝑝max

Tx,𝑖ℎ
𝑡
𝑖,UAV

𝑁0𝑊UAV

)
denotes the

upper bound of 𝑟 𝑡
𝑖,UAV using the maximum transmit power.

Note that for all users that are not associated with the UAV
in time slot 𝑡, the bandwidth and offloading volume assigned
to them equal zero, i.e., 𝑟 𝑡 ,max

𝑖,UAV = 0, 𝛼𝑡
𝑖,UAV = 0,∀𝑖 ∉ N 𝑡

UAV.
To solve P3.1, we adopt the Gauss-Seidel approach [39] to

optimize the offloading volume and the bandwidth allocation
in an alternating manner. Specifically, in each iteration, the
offloading volume decision is obtained in closed forms, and
the bandwidth allocation is determined by the Lagrangian
method. The alternating approach is guaranteed to converge
to the optimal solution since P3.1 is convex, and the feasible
region is a Cartesian product [39] of r𝑡UAV and 𝜶𝑡

UAV.
a) Optimal offloading volume: For a feasible bandwidth

allocation 𝜶𝑡
UAV, the optimal offloading volume for mobile

devices in N 𝑡
UAV can be obtained by solving

P3.1.1 : minimize
r𝑡UAV

(27a)

subject to (27c)

The optimal solution to the above problem is either
the stationary point of (27a) or one of the boundary
points. Specifically, for 𝑖 ∈ N 𝑡

UAV, (𝑟 𝑡
𝑖,UAV)

★ = 0 if
𝑄𝑙

𝑖
(𝑡) + 𝑍 𝑙

𝑖
(𝑡) ≤ 𝑄𝑠

𝑖
(𝑡) + 𝑍 𝑠

𝑖
(𝑡), otherwise, (𝑟 𝑡

𝑖,UAV)
★ =

max
{

min
{
𝑟 𝑡
𝑖,UAV, 𝑟

𝑡 ,max
𝑖,UAV

}
, 0

}
, where 𝑟 𝑡

𝑖,UAV = 𝑊UAV𝛼
𝑡
𝑖,UAV𝜏 ×

log2

(
(𝑄𝑙

𝑖
(𝑡 )+𝑍 𝑙

𝑖
(𝑡 )−𝑄𝑠

𝑖
(𝑡 )−𝑍𝑠

𝑖
(𝑡 ))𝛼𝑡

𝑖,UAV𝜏ℎ𝑡
𝑖,UAV

𝑉𝜓𝑖 ln(2)𝑁0

)
.

b) Optimal bandwidth allocation: For a feasible offloading
volume decision r𝑡

𝑖
, the optimal bandwidth allocation can be

obtained by solving

P3.1.2 : min
𝜶𝑡

UAV

∑︁
𝑖∈N𝑡

UAV

𝜓𝑖 𝑝
UAV
Tx,𝑖 (𝑡) (29a)

s.t. 𝜖𝐴 ≤ 𝛼𝑡
𝑖,UAV,

∑︁
𝑖∈N𝑡

UAV

𝛼𝑡
𝑖,UAV ≤ 1, (29b)

𝑝UAV
Tx,𝑖 (𝑡) ≤ 𝑝max

Tx,𝑖 , 𝑖 ∈ N 𝑡
UAV, (29c)

where 𝑝UAV
Tx,𝑖 (𝑡) =

©«2
𝑟𝑡
𝑖,UAV

𝑊UAV𝛼𝑡
𝑖,UAV𝜏 − 1ª®¬ 𝑁0𝑊UAV

ℎ𝑡
𝑖,UAV

denotes the trans-

mit power of user 𝑖 on the UAV link. First, we observe that
(29c) is equivalent to 𝛼𝑡

𝑖,UAV ≥ 𝛼
𝑡 ,min
𝑖,UAV, where

𝛼
𝑡 ,min
𝑖,UAV ≜

𝑟 𝑡
𝑖,UAV

𝑊UAV𝛼
𝑡
𝑖,UAV𝜏 log2

(
1 + 𝑝max

Tx,𝑖ℎ
𝑡
𝑖,UAV

𝑁0𝑊UAV

) (30)

Then, the partial Lagrangian function associated with the
above problem can be written as

L(𝛼𝑡
𝑖,UAV, _

𝑡
UAV) ≜

∑︁
𝑖∈N𝑡

UAV

𝜓𝑖

©«2
𝑟𝑡
𝑖,UAV

𝑊UAV𝛼𝑡
𝑖,UAV𝜏 − 1ª®¬ 𝑁0𝑊UAV

ℎ𝑡
𝑖,UAV


+ _𝑡UAV

©«
∑︁

𝑖∈N𝑡
UAV

𝛼𝑡
𝑖,UAV − 1ª®¬ , (31)

where _𝑡UAV ≥ 0 is the Lagrangian multiplier associated with
the constraint

∑
𝑖∈N𝑡

UAV
𝛼𝑡
𝑖,UAV ≤ 1. Based on the Karush-

Kuhn-Tucker (KKT) condition, the optimal bandwidth alloca-
tion (𝜶𝑡

UAV)
★ and the optimal Lagrangian multiplier (_𝑡UAV)

★

should satisfy the following equation set{
(𝛼𝑡

𝑖,UAV)
★ = max

{
𝜖𝐴,R𝑖,UAV ((_𝑡UAV)

★)
}
, 𝑖 ∈ N 𝑡

UAV,∑
𝑖∈N𝑡

UAV
(𝛼𝑡

𝑖,UAV)
★ = 1,

(32)
where 𝜖𝐴 = max

{
𝜖𝐴, 𝛼

𝑡 ,min
𝑖,UAV

}
and R𝑖,UAV (_𝑡UAV) denotes the

root of 𝛿
𝛿𝛼𝑡

𝑖,UAV
L(𝛼𝑡

𝑖,UAV, _
𝑡
UAV) = 0. The following proposition

provides a close-form expression for R𝑖,UAV (_𝑡UAV).

Proposition 1. Given _𝑡UAV > 0, the root of
𝛿

𝛿𝛼𝑡
𝑖,UAV

L(𝛼𝑡
𝑖,UAV, _

𝑡
UAV) = 0 is positive and unique as

R𝑖,UAV (_𝑡UAV) =
𝑟 𝑡
𝑖,UAV ln(2)

2𝑊UAV𝜏W
(
𝑟 𝑡
𝑖,UAV ln(2)
2𝑊UAV𝜏

√︂
_𝑡UAVℎ

𝑡
𝑖,UAV𝑊UAV𝜏

𝜓𝑖𝜎
2
UAV𝑟

𝑡
𝑖,UAV ln(2)

) ,
(33)

where W(·) denotes the Lambert-W function.

Proof. Please refer to Appendix B □

It is observed that 𝛿
𝛿𝛼𝑡

𝑖,UAV
L(𝛼𝑡

𝑖,UAV, _
𝑡
UAV) is a monotonic

function with response to 𝛼𝑡
𝑖,UAV. Thus, the optimal Lagrangian

multiplier
(
_𝑡UAV

)★
can be found using a bisection search

over
[
_𝐿

UAV (𝑡);_
𝑈
UAV (𝑡)

]
in which _𝐿

UAV (𝑡) and _𝑈UAV (𝑡) are
selected so that

∑
𝑖∈N𝑡

UAV
max

{
𝜖𝐴,R𝑖,UAV (_𝐿

UAV (𝑡))
}
> 1 and∑

𝑖∈N𝑡
UAV

max
{
𝜖𝐴,R𝑖,UAV (_𝑈UAV (𝑡))

}
< 1. Specifically, the two

boundaries can be selected as follows
_𝐿

UAV (𝑡) = max
𝑖∈N𝑡

UAV

−𝛿𝑝UAV
Tx,𝑖 (𝑡 )

𝛿𝛼𝑡
𝑖,UAV

����
𝛼𝑡
𝑖,UAV=1

,

_𝑈UAV (𝑡) = min
𝑖∈N𝑡

UAV

−𝛿𝑝UAV
Tx,𝑖 (𝑡 )

𝛿𝛼𝑡
𝑖,UAV

����
𝛼𝑡
𝑖,UAV=𝜖𝐴

,

(34)

The searching process for
(
_𝑡UAV

)★
can terminate when

|∑𝑖∈N𝑡
UAV

max
{
𝜖𝐴,R𝑖,UAV (_𝑈UAV (𝑡))

}
− 1| ≤ b, where b is
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Algorithm 1 Lagrangian method for P3.1.2
1: Initialization : b = 10−7, _̃𝐿 = _𝐿

UAV (𝑡 ) , _̃𝑈 = _𝑈UAV (𝑡 ) , 𝑙 = 0, 𝐼max = 200,
𝜖𝐴 = 10−4, 𝛼𝑡

𝑖,UAV = 𝜖𝐴, 𝑖 ∈ N𝑡
UAV

2: while
��� ∑𝑖∈N𝑡

UAV
max

{
𝜖𝐴, R𝑖,UAV (_𝑈UAV (𝑡 ) )

}
− 1

��� > b and 𝑖 ≤ 𝐼max do

3: _̃ = 1
2

(
_̃𝐿 + _̃𝑅

)
and 𝑙 = 𝑙 + 1

4: Set 𝛼𝑡
𝑖,UAV = max

{
𝜖𝐴, R𝑖,UAV (_̃)

}
, 𝑖 ∈ N𝑡

UAV
5: if

∑
𝑖∈N𝑡

UAV
𝛼𝑡
𝑖,UAV ≤ 1 then

6: _̃𝐿 = _̃

7: else
8: _̃𝑈 = _̃

9: end if
10: end while

the accuracy of the algorithm. Details of the the Lagrangian
method for solving P3.1.2 are summarized in Algorithm 1.

2) Optimization on Offloading Volume and Bandwidth Al-
location for the mBS link: Similar to the UAV link, given a
feasible channel assignment decision, the optimization vari-
ables related to the mBS include the bandwidth allocation,
𝜶𝑡

mBS ≜
{
𝛼𝑡
𝑖, 𝑗
|𝑖 ∈ N 𝑡

mBS, 𝑗 = mBS
}
, and the offloading volume

on the mBS link, r𝑡mBS ≜
{
𝑟 𝑡
𝑖, 𝑗
|𝑖 ∈ N 𝑡

mBS, 𝑗 = mBS
}
. Denoted

by x𝑡mBS ≜
{
𝜶𝑡

mBS, r
𝑡
mBS

}
the combination of these variables,

the optimal decisions for the mBS link can be obtained by
solving

P3.2 : min
x𝑡mBS

−
∑︁

𝑖∈N𝑡
mBS

[(
𝑄𝑙

𝑖 (𝑡) + 𝑍 𝑙
𝑖 (𝑡) −

(
𝑟 𝑡𝑖,UAV

)★)
𝑟 𝑡
𝑖,mBS

]
+𝑉

∑︁
𝑖∈N𝑡

mBS

𝜓𝑖

©«2
𝑟𝑡
𝑖,mBS

𝑊mBS𝛼𝑡
𝑖,mBS𝜏 − 1ª®¬ 𝑁0𝑊mBS

ℎ𝑡
𝑖,mBS

 (35a)

s.t. 𝜖𝐴 ≤ 𝛼𝑡
𝑖,mBS,

∑︁
𝑖∈N𝑡

mBS

𝛼𝑡
𝑖,mBS ≤ 1, (35b)

0 ≤ 𝑟 𝑡
𝑖,mBS ≤ min

{
𝑄𝑙

𝑖 (𝑡) −
(
𝑟 𝑡𝑖,UAV

)★
, 𝑟

𝑡 ,max
𝑖,mBS

}
,

𝑖 ∈ N 𝑡
mBS (35c)

where 𝑟
𝑡 ,max
𝑖,mBS = 𝑊mBS𝛼

𝑡
𝑖,mBS𝜏 log2

(
1 + 𝑝max

Tx,𝑖ℎ
𝑡
𝑖,mBS

𝑁0𝑊mBS

)
and the

right-hand side (RHS) of (35c) denotes the upper bound of
𝑟 𝑡
𝑖,mBS at time slot 𝑡. Similar to P3.1, we adopt the Gauss-

Seidel method to solve 𝜶𝑡
mBS and r𝑡mBS of P3.2 in an alternating

manner, in which the optimal offloading volume is given
in a close-form expression and the bandwidth allocation is
determined by the Lagrangian method.

a) Optimal offloading volume: For a feasible bandwidth
allocation 𝜶𝑡

mBS, the optimal offloading volume for mobile
devices in N 𝑡

mBS can be obtained by solving

P3.2.1 : minimize
r𝑡mBS

(35a)

subject to (35c)

The optimal solution to the above problem is either
the stationary point of (35a) or one of the boundary
points. Specifically, for 𝑖 ∈ N 𝑡

mBS, (𝑟 𝑡
𝑖,mBS)

★ =

max
{

min
{
𝑟 𝑡
𝑖,mBS,RHS of (35c)

}
, 0

}
, where 𝑟 𝑡

𝑖,mBS =

𝑊mBS𝛼
𝑡
𝑖,mBS𝜏 × log2

( (
𝑄𝑙

𝑖
(𝑡 )+𝑍 𝑙

𝑖
(𝑡 )−

(
𝑟 𝑡
𝑖,mBS

)★)
𝛼𝑡
𝑖,mBS𝜏ℎ

𝑡
𝑖,mBS

𝑉𝜓𝑖 ln(2)𝑁0

)
.

b) Optimal bandwidth allocation: For a feasible offloading
volume decision, the optimal bandwidth allocation on the mBS
link can be obtained by solving the problem

P3.2.2 : min
𝜶𝑡

mBS

∑︁
𝑖∈N𝑡

mBS

𝜓𝑖 𝑝
mBS
Tx,𝑖 (𝑡) (37a)

s.t. 𝜖𝐴 ≤ 𝛼𝑡
𝑖,mBS,

∑︁
𝑖∈N𝑡

mBS

𝛼𝑡
𝑖,mBS ≤ 1, (37b)

𝑝mBS
Tx,𝑖 (𝑡) ≤ 𝑝max

Tx,𝑖 , 𝑖 ∈ N 𝑡
mBS (37c)

We observe that P3.2.2 is similar to P3.1.2, in which one is
for the SeNB, the other is for the MeNB. Thus, we can adopt
Algorithm 1 to solve P3.2.2; the procedure is exactly the same
by replacing 𝑗 = UAV with 𝑗 = mBS.

3) Optimization on User’s Local Computation: Given the
optimal decision on offloading volume of each user, the
problem of resource allocation for local computation can be
decomposed for each individual 𝑓 𝑡

𝑙,𝑖
:

P3.3 : min
f𝑡𝑙

∑︁
𝑖∈N

(
−𝑄𝑙

𝑖 (𝑡)𝜏 𝑓 𝑡𝑙,𝑖𝐿
−1
𝑖 +𝑉𝜓𝑖^𝑖

(
𝑓 𝑡𝑙,𝑖

)3
)

(38a)

s.t. 0 ≤ 𝑓 𝑡𝑙,𝑖 ≤ 𝑓 max
𝑖 , 𝑖 ∈ N , (38b)

𝑙𝑡𝑖 ≤ 𝑄𝑙
𝑖 (𝑡) − (𝑟 𝑡𝑖,UAV)

★ − (𝑟 𝑡
𝑖,mBS)

★, 𝑖 ∈ N
(38c)

in which constraint (38c) is added to ensure (14g) of the
original problem P1. First, we observe that P3.3 is a convex
problem since its objective function (38a) is convex and all
constraints are linear. Furthermore, since both the objective
function and constraints of P3.3 can be decomposed for each
𝑓 𝑡
𝑙,𝑖

, the optimization for f𝑡
𝑙

can be done by solving each 𝑓 𝑡
𝑙,𝑖

separately. Specifically, the optimal solution to P3.3 is either
at the stationary point of the objective function (38a) or one of

the boundary points as ( 𝑓 𝑡
𝑙,𝑖
)★ = min

{
𝐹𝑖 ,

√︂
𝑄𝑙

𝑖
(𝑡 )𝜏

3^𝑖𝑉𝜓𝑖𝐿𝑖

}
, 𝑖 ∈ N ,

with 𝐹𝑖 = min
{
𝑓 max
𝑖

,

(
𝑄𝑙

𝑖
(𝑡) − (𝑟 𝑡

𝑖,UAV)
★ − (𝑟 𝑡

𝑖,mBS)
★
)
𝐿𝑖/𝜏

}
.

4) Optimization on UAV’s computational resource schedul-
ing: The optimal fc

★(𝑡) can be obtained by solving

P3.4 : min
fc (𝑡)

−
∑︁
𝑖∈N

𝑄𝑠
𝑖 (𝑡)𝜏 𝑓 𝑡𝑐,𝑖/𝐿𝑠 +𝑉𝜓𝑐

∑︁
𝑖∈N

^𝑠

(
𝑓 𝑡𝑐,𝑖

)3

(39a)
s.t. 0 ≤ 𝑓 𝑡𝑐,𝑖 ≤ 𝑓 max

𝑐 , 𝑖 ∈ N , (39b)

𝑐𝑡𝑖 = 𝜏 𝑓 𝑡𝑐,𝑖/𝐿𝑠 ≤ 𝑄𝑠
𝑖 (𝑡), 𝑖 ∈ N (39c)

We observe that similar to P3.3, P3.4 is convex and
the optimization can be decomposed into sub-problems
that involve 𝑓 𝑡

𝑐,𝑖
separately. Specifically, the optimal so-

lution for each 𝑓 𝑡
𝑐,𝑖

is either at the stationary point of
the objective function or one of the boundary points as

( 𝑓 𝑡
𝑐,𝑖
)★ = min

{
𝑓 max
𝑐,𝑖

,

√︃
𝑄𝑠

𝑖
(𝑡 )𝜏

3^𝑠𝑉𝜓𝑐𝐿𝑠

}
, 𝑖 ∈ N , where 𝑓 max

𝑐,𝑖
=

min
{
𝑓 max
𝑐 , 𝑄𝑠

𝑖
(𝑡)𝐿𝑠/𝜏

}
.

VI. ALGORITHM ANALYSIS

In this section, we provide the computational complexity
of the proposed scheme in solving the per-time slot problem,
followed by an analysis of the scheme’s optimality.
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A. Computational Complexity

The calculation mainly comes from the model-based critic
module because, in each time slot, this module must examine
𝑘 potential channel assignment decisions made by the actor
module to select the best one. Importantly, examining one
decision involves solving the optimization of computation and
communication of all users and servers. The time complexity
in each problem is as follows.

Complexity of joint optimization on offloading volume
and bandwidth allocation. Given feasible offloading vol-
umes, Algorithm 1 requires O

(
log2 (𝑁/b)

)
iterations via a bi-

section search to find the optimal bandwidth allocation, where
𝑁 denotes the number of users and b specifies the algorithm
accuracy (e.g., b = 10−4). Given a feasible bandwidth allo-
cation, the optimization on the offloading volume for each
user can be obtained in closed forms; thus, the complexity
is in O(𝑁) considering 𝑁 users. Consequently, the Gauss-
Seidel joint optimization with 𝐼max iterations maximum is with
complexity O

(
𝐼max

(
𝑁 + log2 (𝑁/b)

) )
.

Complexity of optimization on the computation of the
user and the UAV. Since solutions to P3.3 and P3.4 can
both be obtained in closed forms, the optimization is with
complexity O(1) for each user.

In summary, the computational complexity for evaluating
one channel assignment decision is O

(
𝐼max

(
𝑁 + log2 (𝑁/b)

) )
.

Since the critic module examines 𝑘 potential decisions in
each time slot, the overall computational complexity of the
proposed scheme is in O

(
𝑘 𝐼max

(
𝑁 + log2 (𝑁/b)

) )
with fast

execution.1

B. Optimality Analysis

We assume that the traffic arrival and channel gain fluctua-
tion for each user is an independent and identically distributed
(i.i.d) random process, denoted as 𝜔(𝑡) =

{
ℎ𝑡
𝑖, 𝑗
, 𝐴𝑡

𝑖

}
𝑖∈N, 𝑗∈S

. A

policy that observes 𝜔(𝑡) in each time slot and makes control
decisions independent of the queue backlog is referred to as
an 𝜔-only policy.

To ensure the strong stability of queues, we assume that the
following assumption holds, which is the Slater condition for
Lyapunov optimization [28]. The asymptotic optimality of the
proposed DRLRM scheme is then provided in Theorem 2.

Assumption 1. (Slater Condition) There are values 𝜖 > 0
and Φ(𝜖) (where 0 ≤ Φ(𝜖) ≤ 𝑃max

sys ) and an 𝜔-only policy Π

making control decision 𝛼Π,𝑡 in time slot 𝑡 that satisfies

E
[
𝑃sys (𝑡)

��𝛼Π,𝑡
]
= Φ(𝜖),

E
[
𝐴𝑡
𝑖

]
≤ E

[
𝐷𝑡

𝑖

��𝛼Π,𝑡
]
− 𝜖,∀𝑖 ∈ N ,

E
[
𝑟 𝑡𝑖,UAV

��𝛼Π,𝑡
]
≤ E

[
𝑐𝑡𝑖

��𝛼Π,𝑡
]
− 𝜖,∀𝑖 ∈ N . (40)

Theorem 2. Suppose that the 𝜔(𝑡) process is i.i.d over time
slots, P1 is feasible, and the Slater condition holds for some

1Given settings in Section VII, it is demonstrated that the running time of
the proposed DRLRM scheme for one-shot decision is milliseconds, using
Python and Tensorflow on a PC with Intel Core i7 2.9 GHz CPU and Nvidia
GeForce RTX 3070 GPU. In this regard, the MEC server can output the
one-slot decision within the time frame duration (e.g., 10 ms in LTE).

𝜖 and Φ(𝜖). Suppose that the proposed DRLRM algorithm
produces a C-additive approximation (𝐶 ≥ 0) of the minimum
of (22) every time slot, then the following statements hold.
(a) The average system power consumption satisfies

lim
𝑡→∞

1
𝑇

𝑇−1∑︁
𝑡=0
E

[
𝑃sys (𝑡)

]
≤ 𝑃∗

sys +
�̂� + 𝐶

𝑉
, (41)

where 𝑃∗
sys is the minimum average power cost achievable

by any policy that meets the required constraints.
(b) All queues 𝑄𝑙

𝑖
(𝑡), 𝑄𝑠

𝑖
(𝑡), 𝑍 𝑙

𝑖
(𝑡), 𝑍 𝑠

𝑖
(𝑡) are mean rate stable

and QoE constraints (3) and (4) are satisfied.

Proof. Please refer to Appendix C □

VII. NUMERICAL RESULTS AND DISCUSSION

In this section, simulation results are provided to evalu-
ate the proposed scheme’s performance. In simulation, we
consider 𝑁 = 8 mobile devices placed randomly around a
hot spot within a radius of 100 meters. The MeNB (i.e., the
mBS) is 500 meters away from the users while the SeNB
(i.e., the UAV) flies above them at a fixed altitude of 50
meters. Each MEC server serves at most two users at a
time. The small-scale fading channel power gains in dB, ℎ̃𝑡

𝑖, 𝑗

[dB], are normally distributed with mean E[ℎ̃𝑡
𝑖, 𝑗

[dB]] = 0
and standard variance 𝜎ℎ̃𝑡

𝑖, 𝑗
[dB] = 4. The task arrival in each

time slot follows the Poisson distribution with the same mean
for all users E[𝐴𝑡

𝑖
] = _ = 15 kbits, unless otherwise stated.

Other parameters include ^ = 10−28 Ws3/cycle3, 𝑓 max
𝑐 = 1

GHz, 𝜓𝑐 = 0, 1, 𝑁0 = −174 dBm/Hz, 𝑔0 = −50 dB,
𝛾UAV = 𝛾mBS = 2.7601. 𝐿𝑖 = 𝐿𝑠 = 737.5 cycles/bit, 𝜓𝑖 = 1,
𝑝max

Tx,𝑖 = 20 dBm, 𝑓 max
𝑖

= 0.5 GHz, 𝑖 ∈ N . Each simulation is
conducted over a time duration of 𝑇 = 10000 with slot length
𝜏 = 10 milliseconds.

For the proposed method, we set 𝜎𝑛 = 0.25 and 𝑘 = 16 to
balance the exploration and exploitation for the actor module.
The DNN consists of three 1-D convolutional layers, followed
by a Flatten layer and three Dense layers; all are implemented
using Tensorflow. The ReLU (rectified linear unit) activation
is used for all layers except the last one with the sigmoid
function.

Benchmarking schemes: To evaluate the performance, we
use the following four benchmark schemes:

– Exhaustive Channel Assignment and Joint Resource Allo-
cation (Exhaustive): The network investigate all possible
decisions to select the best channel assignment.

– Queue Length-based Greedy Channel Assignment and
Joint Resource Allocation (QL-JRA): The network prior-
itizes users having longest virtual queues 𝑍 𝑙

𝑖
(𝑡) to assign

communication channels.
– Channel Gain-based Greedy Channel Assignment and

Joint Resource Allocation (CG-JRA): Users with highest
channel gains are prioritized to obtain communications
resources.

– Random Channel Assignment Policy and Joint Resource
Allocation (RA-JRA): The network randomly assigns
users to the mBS and the UAV.
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TABLE III: Details of two scenarios for performance evaluation
Scenario I (Energy Efficiency Comparison) Scenario II (Stress Test for Queue Stability)

Objective Investigate energy efficiency, given a strict constraint on thresholds at
which the average queue length must be less than or equal to.

Relax constraints on the queue length threshold, investigate the ability
to stabilize queues under very high computational traffic.

Arrival rate Reasonable Very high

Focused KPI
Power consumption
How much energy is consumed to satisfy the predefined queue length
threshold constraint?

Queue stability
Given that the arrival rate approximates the maximum processing
capability, at which level are queues stable?

These benchmark schemes differentiate in the approach to
solving x𝑡 for channel assignment. However, all apply the critic
module’s optimization procedure specified in section V-B to
optimize the remaining variables in y𝑡 .

It is noteworthy that the exhaustive method is considered
the optimal solution for benchmarking. However, finding the
optimal solution via exhaustive search is not feasible if we
consider a system with many users.

Performance evaluation scenarios: To evaluate the degree
of suboptimality and convergence, we compare the proposed
DRLRM method with the benchmark schemes in the two
scenarios described in Table III.

– Scenario I: Power consumption is considered the main
KPI for performance evaluation since all methods can
satisfy the queue stability constraints given a reasonable
computational load. The arrival rate is set at a reasonable
level, _ = 10 kb. Accordingly, the queue length thresh-
olds are 𝑄th

𝑙
= 15 kb and 𝑄th

𝑠 = 3 kb. For the proposed
DRLRM method, the number of generated actions is set
at 𝑘 = 16 (i.e., 2% of the search space).

– Scenario II: A very high computational load with _ =

30 kb is set to demonstrate high-traffic periods. All
methods are expected to run at the highest energy level
virtually all the time to stabilize queues. Thus, power con-
sumption is not our focus. The queue length threshold is
relaxed (i.e., 𝑄th

𝑙
= 𝑄th

𝑠 = ∞) to facilitate the optimization.
For the proposed method, 𝑘 = 80 is set (approximately
10% of the search space).

Performance in Scenario I: In Fig. 3, we compare all
methods in Scenario I, where we focus on the power con-
sumption given predefined queue threshold constraints. Each
point in the figure is a moving average of 1500 time slots.
From Fig. 3a and Fig. 3b, we observe that thanks to the
critic module’s optimization, all methods can keep the user’s
and the UAV’s queues stable at levels lower than or equal to
the predefined thresholds (i.e., queue threshold constraints are
satisfied). From Fig. 3c, we observe a power consumption
reduction for the proposed scheme over time. In the early
stage, the proposed method consumes much more power than
the optimal channel assignment (as much as the QL-JRA
method). In the later phase, the scheme’s power consumption
gently decreases over time and eventually converges to the
same level as if the optimal decision was selected. This
result proves the effectiveness of the training when the DNN
gradually learns from experience to mimic the optimal policy.
With the considered settings, our proposed method provides

a reduction of 13.4%, 26.6%, and 30.5% compared to the QL-
JRA, CH-JRA, and RA-JRA schemes, respectively.

Performance in Scenario II: Figure 4 illustrates the
performance of all schemes in Scenario II, where we focus

on the queue stability KPI under very high traffic. Each
point in the figure is a moving average of 1500 time slots.
We observe that while the UAV’s queue is kept stable by
all methods, only the optimal channel assignment and the
proposed scheme can cause local queues of users to be stable.
Specifically, the user’s backlog queue of the QL-JRA, CH-
JRA, and RA-JRA schemes increases almost linearly over
time, indicating that the queue is not stable. This is because,
without a proper policy for channel assignment, the achievable
task processing capability is very limited and cannot afford
the given task arrival rate. In contrast, the proposed method’s
user queue length also increases rapidly in the early stage but
decreases gradually in the later phase. In the end, the scheme’s
user queue length is almost the same as that of the optimal
channel assignment. This result once again demonstrates the
effectiveness and convergence performance of the proposed
DRLRM framework, even in unfavorable circumstances with
a very high computational workload.

Effect of the parameter 𝑘: In Fig. 5, we investigate the
convergence behavior of the proposed DRLRM method under
different settings of the hyper-parameter 𝑘 in Scenario II. The
moving average rolling over 2000 time slots of the user queue
length is plotted. The number of potential actions of the actor
module (𝑘) is set at 40, 80, and 120 for evaluation. The figure
clearly shows that the hyperparameter plays a critical role in
the convergence speed of the proposed method. Higher values
of 𝑘 help the DNN learn the optimal channel assignment
policy faster. They speed up the convergence at the cost of
higher computational resources required for the critic module
to investigate the generated potential decisions. Specifically,
the time duration until convergence of the proposed method
(within a 1% gap compared to the optimal decision) for
𝑘 = 120 and 𝑘 = 80 are 6000 and 8000 time slots, respectively.
This is because, with more decisions generated, the critic
module has more chance to extract good approximations of the
global minimum of the per-time slot problem. In other words,
by investigating more potential decisions, the critic module
helps improve the quality of the training data. In the long
term, this advantage speeds up the learning process.

Effect of the queue length threshold: Fig. 6a illustrates
the impact of the queue threshold on the average system
queue length when changing 𝑉 . It is noteworthy that the queue
length threshold can be referred to as a means of controlling
the service delay since the average task execution delay is
proportional to the average queue length. We observe that if
the queue stability level is not constrained, the average queue
length increases almost linearly with the Lyapunov parameter.
In addition, a higher task arrival rate leads to an increase in
the average queue length. The interesting point is when we
add additional constraints (3) and (4) to enforce the stability
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(a) User’s queue length (b) UAV’s queue length (c) Weighted-sum system power

Fig. 3: Performance in Scenario I (Energy efficiency comparison), _ = 10 kb, 𝑄th
𝑙

= 15 kb, 𝑄th
𝑠 = 3 kb, 𝑘 = 16, 𝑉 = 1010.

(a) User’s queue length (b) UAV’s queue length (c) Weighted-sum system power

Fig. 4: Performance in Scenario II (Stress test for queue stability), _ = 30 kb, 𝑄th
𝑙
= 𝑄th

𝑠 = ∞, 𝑘 = 80, 𝑉 = 1010.

Fig. 5: Convergence behavior of the proposed scheme in
Scenario II, _ = 30 kb, 𝑄th

𝑙
= 𝑄th

𝑠 = ∞, 𝑉 = 1010.

level for the queue length. We notice that with small values
of 𝑉 , the queue length threshold constraint does not affect the
optimization. When 𝑉 increases, the average queue length is
effectively controlled so that the constraint is satisfied for all
considered task arrival rates. Note that in case _ = 10 kb, the
queue stability level with and without constraints are almost
the same since the setting of 𝑉 is not large enough to make
the average queue length surpass the threshold.

Fig. 6b investigates the impact of the queue length threshold
on the system power consumption when changing 𝑉 . We
observe that the power consumption of all settings decreases,
corresponding to the increase of the parameter 𝑉 , as expected.
This is because increasing 𝑉 puts more emphasis on the
system power consumption than stabilizing the queue length
in the per-time slot problem. In addition, we notice that as the
arrival rate increases, the power consumption increases accord-

(a) Queue length

(b) System power

Fig. 6: Effect of the queue length threshold constraints

ingly. The queue threshold constraint also significantly impacts
power consumption. The gap between the two scenarios (with
and without the constraint) tends to enlarge with increasing
the arrival rate and control parameter 𝑉 . This is because the
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Fig. 7: Power consumption vs. task completion delay, 𝑄th
𝑙
=

𝑄th
𝑠 = ∞, 𝑉=108, 109, {2.5, 5, 7.5} × 109, 1010.

network has no choice but to consume more energy to maintain
queues stable at a satisfactory level (as depicted in Fig. 6a),
especially in cases with high arrival rates.

Power-delay trade-off: In Fig. 7, we investigate the trade-
off between the average weighted sum system power con-
sumption and the average task computation delay by varying
the Lyapunov control parameter 𝑉 with unconstrained queue
thresholds. As can be observed, the average task computation
delay increases as the power consumption decreases, indicat-
ing that a proper setting of 𝑉 is critical to balance the two
objectives. Besides, we observe that given a specific execution
delay level, the average weighted sum power consumption
increases with the task arrival rate. The result is logical since
more power consumption is required to keep the queue stable
when the workload grows.

VIII. CONCLUSION

This paper proposes a hybrid method that combines con-
ventional model-based optimization and model-free DRL to
minimize the power consumption of a multi-user, multi-
server MEC network. Via DC, one user can offload tasks to
the macro base station and the UAV-mounted MEC server
simultaneously. The power minimization is formulated as a
multi-stage MINLP problem with long-term constraints of
queue stability and average task computation delay. Lyapunov
optimization is exploited to transform the original multi-stage
problem into a per-time slot problem, which is then solved
using a DRL framework. Theoretical analyses are provided
to demonstrate the proposed method’s optimality and com-
putational complexity. Extensive simulations show that the
proposed framework can produce nearly the same performance
as the optimal solution obtained via an exhaustive search.
In future research, it would be interesting to investigate the
impact on system performance of the UAV-ground base station
collaboration and the adaptive deployment of multiple UAVs.
Other research directions, such as multi-layer edge computing,
vertical networks of edge servers, and quality of experience-
aware deployment, should also be investigated.

APPENDIX A
PROOF OF THEOREM 1

To begin with, let Q𝑙 (𝑡) ≜
{
𝑄𝑙

𝑖
(𝑡)

}
𝑖∈N ,Q𝑠 (𝑡) ≜{

𝑄𝑠
𝑖
(𝑡)

}
𝑖∈N ,Z𝑙 (𝑡) ≜

{
𝑍 𝑙
𝑖
(𝑡)

}
𝑖∈N , and Z𝑠 (𝑡) ≜

{
𝑍 𝑠
𝑖
(𝑡)

}
𝑖∈N

denote the system state variables. We then define the Lyapunov
function L(·) and the drift function Δ(·) for Q𝑙 (𝑡), Q𝑠 (𝑡),
Z𝑙 (𝑡), and Z𝑠 (𝑡) in a similar way as for 𝚯(𝑡) in (17) and (18),
respectively, where the conditional expectation is taken given
𝚯(𝑡). The following lemmas give the upper bound of the drift
function for each of the above system state. Note that in what
follows, [𝑥]+ denotes the function max {𝑥, 0}. Additionally,
since the communication and computation resources at the user
and the UAV are limited, we denote the upper bound of 𝐷𝑡

𝑖
,

𝑟 𝑡
𝑖

and 𝑐𝑡
𝑖

as 𝐷𝑖,max, 𝑟𝑖,max and 𝑐𝑖,max, respectively. Similarly,
𝐴𝑖,max denotes the user 𝑖’s maximal task arrival in a time slot.

Lemma 1. The drift function for Q𝑙 (𝑡) is bounded as

Δ

(
Q𝑙 (𝑡)

)
≤ 𝐵1 −

∑︁
𝑖∈N
E

[
𝑄𝑙

𝑖 (𝑡)
(
𝑙𝑡𝑖 + 𝑟 𝑡𝑖 − 𝐴𝑡

𝑖

) ��𝚯(𝑡)
]
, (42)

where 𝐵1 = 1
2
∑

𝑖∈N

(
𝐷2

𝑖,max + 𝐴2
𝑖,max

)
, 𝑟 𝑡

𝑖
= 𝑟 𝑡

𝑖,UAV + 𝑟 𝑡
𝑖,mBS.

Proof. We have 𝑄𝑙
𝑖
(𝑡 + 1)2 =

( [
𝑄𝑙

𝑖
(𝑡) − 𝐷𝑡

𝑖

]+ + 𝐴𝑡
𝑖

)2 (†)
=(

𝑄𝑙
𝑖
(𝑡) − 𝐷𝑡

𝑖
+ 𝐴𝑡

𝑖

)2
= 𝑄𝑙

𝑖
(𝑡)2 − 2𝑄𝑙

𝑖
(𝑡) (𝐷𝑡

𝑖
− 𝐴𝑡

𝑖
) + (𝐷𝑡

𝑖
−

𝐴𝑡
𝑖
)2, where (†) is obtained since 𝐷𝑡

𝑖
= 𝑙𝑡

𝑖
+ 𝑟 𝑡

𝑖
≤ 𝑄𝑙

𝑖
(𝑡)

as in (14g). By some algebraic transformations, we have
1
2
(
𝑄𝑙

𝑖
(𝑡 + 1)2 −𝑄𝑙

𝑖
(𝑡)2) ≤ −𝑄𝑙

𝑖
(𝑡) (𝐷𝑡

𝑖
− 𝐴𝑡

𝑖
) + 1

2 (𝐷
𝑡
𝑖
− 𝐴𝑡

𝑖
)2

≤ −𝑄𝑙
𝑖
(𝑡) (𝐷𝑡

𝑖
− 𝐴𝑡

𝑖
) + 1

2

(
𝐷2

𝑖,max + 𝐴2
𝑖,max

)
By taking the condi-

tional expectation on both sides of the inequation and summing
up over all users 𝑖 ∈ N , we obtain (42). □

Lemma 2. The drift function Δ
(
Z𝑙 (𝑡)

)
is upper bounded by

𝐵2 −
∑︁
𝑖∈N
E

[
𝑍 𝑙
𝑖 (𝑡)

(
𝑙𝑡𝑖 + 𝑟 𝑡𝑖 −𝑄𝑙

𝑖 (𝑡) − 𝐴𝑡
𝑖 +𝑄th

𝑙,𝑖

)���𝚯(𝑡)
]
, (43)

where 𝐵2 = 1
2
∑

𝑖∈N
[
𝐷2

𝑖,max + 𝑄𝑙
𝑖
(𝑡)2 + (𝐴𝑡

𝑖
)2 + (𝑄th

𝑙,𝑖
)2 +

𝐷𝑖,max𝑄
th
𝑙,𝑖

+𝑄𝑙
𝑖
(𝑡)𝐴𝑡

𝑖

]
and 𝑟 𝑡

𝑖
= 𝑟 𝑡

𝑖,UAV + 𝑟 𝑡
𝑖,mBS.

Proof. From (15), we have

𝑍 𝑙
𝑖 (𝑡 + 1)2 (†)

≤
(
𝑍 𝑙
𝑖 (𝑡) +𝑄𝑙

𝑖 (𝑡 + 1) −𝑄th
𝑙,𝑖

)2

(‡)
=

(
𝑍 𝑙
𝑖 (𝑡) +𝑄𝑙

𝑖 (𝑡) − 𝐷𝑡
𝑖 + 𝐴𝑡

𝑖 −𝑄th
𝑙,𝑖

)2

= 𝑍 𝑙
𝑖 (𝑡)2 − 2𝑍 𝑙

𝑖 (𝑡)
(
𝐷𝑡

𝑖 −𝑄𝑙
𝑖 (𝑡) − 𝐴𝑡

𝑖 +𝑄th
𝑙,𝑖

)
+

(
𝐷𝑡

𝑖 −𝑄𝑙
𝑖 (𝑡) − 𝐴𝑡

𝑖 +𝑄th
𝑙,𝑖

)2
(44)

where (†) is due to the fact that (max {𝑎 − 𝑏, 0})2 ≤
(𝑎 − 𝑏)2; and (‡) is with condition (14g) of P1 that 𝐷𝑙

𝑖
=

𝑙𝑡
𝑖
+ 𝑟 𝑡

𝑖
≤ 𝑄𝑙

𝑖
(𝑡). Thus, we have 1

2
(
𝑍 𝑙
𝑖
(𝑡 + 1)2 − 𝑍 𝑙

𝑖
(𝑡)2) (†)

≤
−𝑍 𝑙

𝑖
(𝑡)

(
𝐷𝑡

𝑖
−𝑄𝑙

𝑖
(𝑡) − 𝐴𝑡

𝑖
+𝑄th

𝑙,𝑖

)
+ 1

2

[
𝐷2

𝑖,max +𝑄𝑙
𝑖
(𝑡)2 + (𝐴𝑡

𝑖
)2 +

(𝑄th
𝑙,𝑖
)2 + 𝐷𝑖,max𝑄

th
𝑙,𝑖

+ 𝑄𝑙
𝑖
(𝑡)𝐴𝑡

𝑖

]
where (†) is obtained since

(𝑎 − 𝑏)2 ≤ 𝑎2 + 𝑏2 for 𝑎𝑏 ≥ 0 and 0 ≤ 𝐷𝑡
𝑖
≤ 𝐷𝑖,max. By

replacing 𝐷𝑡
𝑖

by 𝑙𝑡
𝑖
+ 𝑟 𝑡

𝑖
, taking the conditional expectation on

both sides of the inequation and summing up over all users
𝑖 ∈ N , we obtain (43). □

Lemma 3. The drift function for Q𝑠 (𝑡) is bounded as

Δ (Q𝑠 (𝑡)) ≤ 𝐵3 −
∑︁
𝑖∈N
E

[
𝑄𝑠

𝑖 (𝑡)
(
𝑐𝑡𝑖 − 𝑟 𝑡𝑖,UAV

)���𝚯(𝑡)
]
, (45)
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where 𝐵3 = 1
2
∑

𝑖∈N

(
𝑐2
𝑖,max + 𝑟2

𝑖,max

)
.

Proof. The proof is similar to that of Lemma 1. □

Lemma 4. The drift function Δ (Z𝑠 (𝑡)) is upper bounded by

𝐵4 −
∑︁
𝑖∈N
E

[
𝑍 𝑠
𝑖 (𝑡)

(
𝑐𝑡𝑖 −𝑄𝑠

𝑖 (𝑡) − 𝑟 𝑡𝑖,UAV +𝑄th
𝑠,𝑖

)���𝚯(𝑡)
]
, (46)

where 𝐵4 = 1
2
∑

𝑖∈N
[
𝑐2
𝑖,max + 𝑄𝑠

𝑖
(𝑡)2 + 𝑟2

𝑖,max + (𝑄th
𝑠,𝑖
)2 +

𝑐𝑖,max𝑄
th
𝑠,𝑖

+𝑄𝑠
𝑖
(𝑡)𝑟𝑖,max

]
.

Proof. The proof is similar to that of Lemma 2. □

It is straightforward that Δ (𝚯(𝑡)) = Δ
(
Q𝑙 (𝑡)

)
+Δ (Q𝑠 (𝑡)) +

Δ
(
Z𝑙 (𝑡)

)
+ Δ (Z𝑠 (𝑡)). Thus, by summing up the left hand

sides of (42), (43), (45), (46) we obtain the upper bound of
the drift-plus-penalty as in (20), where �̂� = 𝐵1 + 𝐵2 + 𝐵3 +
𝐵4 + ∑

𝑖∈N

[
𝑍 𝑙
𝑖
(𝑡)

(
𝑄𝑙

𝑖
(𝑡) −𝑄th

𝑙,𝑖

)
+ 𝑍 𝑠

𝑖
(𝑡)

(
𝑄𝑠

𝑖
(𝑡) −𝑄th

𝑠,𝑖

) ]
. We

observe that �̂� consists of constant terms from the observation
at the beginning of time slot 𝑡, thus can be put aside from the
optimization of the target control variables X𝑡 .

APPENDIX B
PROOF OF PROPOSITION 1

Let L′ denote the derivative of L(𝛼𝑡
𝑖,UAV, _

𝑡
UAV) with re-

sponse to 𝛼𝑡
𝑖,UAV. we have L′ = 𝛿

𝛿𝛼𝑡
𝑖,UAV

L(𝛼𝑡
𝑖,UAV, _

𝑡
UAV) =

− 𝜓𝑖𝜎
2
𝑗
𝑟 𝑡
𝑖,UAV ln(2)

ℎ𝑡
𝑖, 𝑗

𝑊𝑗 𝜏 (𝛼𝑡
𝑖,UAV )2 exp

(
𝑟 𝑡
𝑖,UAV ln(2)
𝑊𝑗 𝛼

𝑡
𝑖,UAV𝜏

)
+ _𝑡UAV. The first term of L′,

denoted as 𝐹 (𝛼𝑡
𝑖,UAV), is an increasing function with response

to 𝛼𝑡
𝑖,UAV. Furthermore, we have lim𝛼𝑡

𝑖,UAV→0+ 𝐹 (𝛼𝑡
𝑖,UAV) = −∞

and lim𝛼𝑡
𝑖,UAV→+∞ 𝐹 (𝛼𝑡

𝑖,UAV) = 0. Thus, given _𝑡UAV > 0, the
root of equation L′ = 0 is positive and unique. Solving L′ = 0,
we have 1(

𝛼𝑡
𝑖,UAV

)2 exp
(
𝑟 𝑡
𝑖,UAV ln(2)
𝑊UAV𝜏

1
𝛼𝑡
𝑖,UAV

)
=

_𝑡UAVℎ
𝑡
𝑖, 𝑗

𝑊UAV𝜏

𝜓𝑖𝜎
2
𝑗
𝑟 𝑡
𝑖,UAV ln(2) . We

recognize that the equation has the form 𝑥2 exp(𝑎𝑥) = 𝑐,
where 𝑥 = 1

𝛼𝑡
𝑖,UAV

, 𝑎 =
𝑟 𝑡
𝑖,UAV ln(2)

𝑊𝑗 𝜏
, 𝑐 =

_𝑡UAVℎ
𝑡
𝑖, 𝑗

𝑊𝑗 𝜏

𝜓𝑖𝜎
2
𝑗
𝑟 𝑡
𝑖,UAV ln(2) . Solving

the equation using the Lambert-W function yields 𝛼𝑡
𝑖,UAV =

𝑎

2W
(
𝑎
√
𝑐

2

) . Substituting 𝑎 and 𝑐, we obtain (33).

APPENDIX C
PROOF OF THEOREM 2

To begin with, we introduce the following lemma for
feasibility of problem P1.

Lemma 5. Suppose that 𝜔(𝑡) is stationary. If P1 is feasible,
then for any 𝛿 > 0, there is an 𝜔-only policy Π that satisfies

E
[
𝑃sys (𝑡)

��𝛼Π,𝑡
]
≤ 𝑃∗

sys + 𝛿

E
[
𝐴𝑡
𝑖

]
≤ E

[
𝐷𝑡

𝑖

��𝛼Π,𝑡
]
+ 𝛿,∀𝑖 ∈ N

E
[
𝑟 𝑡𝑖,UAV

��𝛼Π,𝑡
]
≤ E

[
𝑐𝑡𝑖

��𝛼Π,𝑡
]
+ 𝛿,∀𝑖 ∈ N (47)

Proof. Please see Theorem 4.5 of [28] for detailed proof. □

Proof of statement (a). Considering an 𝜔-only policy Π

with a corresponding value 𝛿 > 0, applying Lemma 5 into the
right-hand side (RHS) of (20) yields

Δ (𝚯(𝑡)) +𝑉E
[
𝑃sys (𝑡)

]

(†)
≤�̂� + 𝐶 −

∑︁
𝑖∈N
E

[(
𝑄𝑙

𝑖 (𝑡) + 𝑍 𝑙
𝑖 (𝑡)

) (
𝐷𝑡

𝑖 − 𝐴𝑡
𝑖

) ]
−

∑︁
𝑖∈N
E

[ (
𝑄𝑠

𝑖 (𝑡) + 𝑍 𝑠
𝑖 (𝑡)

) (
𝑐𝑡𝑖 − 𝑟 𝑡𝑖,UAV

)]
+𝑉E

[
𝑃sys (𝑡)

]
(‡)
≤�̂� + 𝐶 + 𝛿

∑︁
𝑖∈N

(
𝑄𝑙

𝑖 (𝑡) + 𝑍 𝑙
𝑖 (𝑡) +𝑄𝑠

𝑖 (𝑡) + 𝑍 𝑠
𝑖 (𝑡)

)
+𝑉

(
𝑃∗

sys + 𝛿

)
,

(48)

where (†) is because the 𝜔-only policy Π is independent of
the queue backlog 𝚯(𝑡) and 𝜔(𝑡) is i.i.d over time; (‡) is
obtained by plugging in (47). By letting 𝛿 → 0, we obtain
Δ (𝚯(𝑡)) + 𝑉E

[
𝑃sys (𝑡)

]
≤ �̂� + 𝐶 + 𝑉𝑃∗

sys. By summing up
both sides from 𝑡 = 0 to 𝑇 − 1, taking iterated expectation and
telescoping sums, then dividing both sides by 𝑇𝑉 , we obtain

1
𝑇𝑉
E [L(𝚯(𝑇))] − 1

𝑇𝑉
E [L(𝚯(0))] + 1

𝑇

∑𝑇−1
𝑡=0 E

[
𝑃sys (𝑡)

]
≤ (�̂� + 𝐶)/𝑉 + 𝑃∗

sys. Taking the limit on both sides of the
inequation as 𝑇 → ∞, we obtain (41). This concludes the
proof of statement (a).

Proof of statement (b). We consider an 𝜔-only policy Π

that satisfies the Slater condition in Assumption 1. Plugging
(40) into (†) of (48), we obtain Δ (𝚯(𝑡)) + 𝑉E

[
𝑃sys (𝑡)

]
≤

�̂� + 𝐶 − 𝜖
∑

𝑖∈N
(
𝑄𝑙

𝑖
(𝑡) + 𝑍 𝑙

𝑖
(𝑡) +𝑄𝑠

𝑖
(𝑡) + 𝑍 𝑠

𝑖
(𝑡)

)
+ 𝑉Φ(𝜖).

By taking integrated expectations, summing the
telescoping series, and rearranging terms, we
obtain 1

𝑇

∑𝑇−1
𝑡=0

∑𝑁
𝑖=1

(
𝑄𝑙

𝑖
(𝑡) + 𝑍 𝑙

𝑖
(𝑡) +𝑄𝑠

𝑖
(𝑡) + 𝑍 𝑠

𝑖
(𝑡)

)
≤

�̂�+𝐶
𝜖

− 𝑉
𝜖

(
1
𝑇

∑𝑇−1
𝑡=0 E

[
𝑃sys (𝑡)

]
−Φ(𝜖)

)
+ E[L(Φ(0) ]

𝜖 𝑇
. By

taking the limit of both sides of the inequation as 𝑇 → ∞
and considering the fact 1

𝑇

∑𝑇−1
𝑡=0 E

[
𝑃sys (𝑡)

]
≤ 𝑃∗

sys, we
obtain 1

𝑇

∑𝑇−1
𝑡=0

∑𝑁
𝑖=1

(
𝑄𝑙

𝑖
(𝑡) + 𝑍 𝑙

𝑖
(𝑡) +𝑄𝑠

𝑖
(𝑡) + 𝑍 𝑠

𝑖
(𝑡)

)
≤

1
𝜖

(
�̂� + 𝐶 −𝑉 (𝑃∗

sys −Φ(𝜖))
)
< ∞. The inequation indicates

that all queues 𝑄𝑙
𝑖
(𝑡), 𝑍 𝑙

𝑖
(𝑡), 𝑄𝑠

𝑖
(𝑡), 𝑍 𝑠

𝑖
(𝑡) are strongly stable,

which also implies mean rate stability (Theorem 2.8 of [28]).
In addition, since the two virtual queues 𝑍 𝑙

𝑖
(𝑡), 𝑍 𝑠

𝑖
(𝑡) are

mean-rate stable, the QoE constraints (3) and (4) are satisfied.
This conludes the proof of statement (b).
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